
Anomaly-based intrusion detection

for automotive networks

© 2016 by Mikhail Smolin. All rights reserved.

ANOMALY-BASED INTRUSION DETECTION FOR AUTOMOTIVE NETWORKS

BY

MIKHAIL SMOLIN

MASTER’S THESIS

Submitted in partial fulfillment of the
requirements for the degree of Master of Science

in Computer Science and Media

Department of Computer Science
Stuttgart Media University

Stuttgart, Germany

Abstract

For a long time, vehicle safety was understood to be essentially only the seat belt, a reason-
ably large crumple zone, and airbags. Traditionally, car manufacturers had to ensure the
safety of drivers and passengers through devices which used to protect the occupants against
physical damage, caused by accidents. In the era of connected cars, safety and security may
also be impaired that people deliberately launch cyber attacks on vehicles, which is otherwise
only known from the Internet. Recently, it has been shown that hackers can access a car’s net-
work and take remote control [1–5]. Nowadays, modern cars have full access to the Internet,
using network communication to other vehicles and interact with the road infrastructure in
accordance with local traffic conditions. Advances in technology, connected and autonomous
vehicles create several attack surfaces for potential cyber attacks [6], [7]. On that account, in-
formation security comes to an increasingly higher significance within the automotive sector.
Conventional network security strategies, such as firewalls and gateways can prevent an unau-
thorized external access to the network. When it comes to automotive cyber security, threats
are, however, more subtle. The potential security risks are currently changing significantly,
as the internetworking of physical devices intersects with the automotive industry where in-
formation security meets functional security. This risk is growing due to the increasing use of
standardized components and open interfaces which lead a possible hacker to new challenges.
A central approach to mitigate these vulnerabilities is the permanent observation and analy-
sis of network data and asserting their legitimacy. The main objective is to detect possible in-
trusions by examining patterns in the observed data that deviate from the expected behavior.
In this thesis, the applicability towards the problem of detecting anomaly-based intrusions
in an automobile network by means of a self-learning mechanism is proposed and evaluated.
Using in-vehicle network recordings of a modern sedan, a neural network is trained in order
to detect simulated attacks as anomalous behavior deviating from the learned vehicle state.

Zusammenfassung

Lange Zeit verstand man unter Fahrzeugsicherheit im Wesentlichen den Dreipunktgurt, eine
relativ große Knautschzone sowie Airbags. Um die Sicherheit von Autofahrern und Passagie-
ren gewährleisten zu können, mussten Automobilhersteller für gewöhnlich Vorrichtungen an-
bringen, um so körperliche Schäden vorzubeugen, die bei Verkehrsunfällen entstehen. In der
Connected-Car-Ära können zusätzlich Cyberangriffe die Fahrzeugsicherheit beeinträchtigen.
Diese sonst nur aus dem Internet bekannten Attacken können gegenwärtig bewusst auf Autos
verübt werden. Dass sich Hacker Zugriff in das Automobilnetzwerk verschaffen und somit
ein Fahrzeug fernsteuern können, wurde jüngst bewiesen [1–5]. Heutzutage haben moderne
Autos Internetzugang, sie vernetzen sich mit anderen Fahrzeugen und können mit ihrer Um-
welt interagieren. Der technologische Fortschritt, vernetzte und selbstfahrende Fahrzeuge
bieten Hackern zahlreiche Angriffsflächen für mögliche Cyberattacken [6], [7]. Aus diesem
Grund wird der Cybersicherheit in der Automobilbranche eine besonders große Bedeutung
zugeschrieben. Konventionelle Strategien aus der IT-Sicherheit, wie beispielsweise Firewalls
und Gateways, können einen unautorisierten Systemzugriff verhindern. Im Hinblick auf den
Automobilbereich, sind mögliche Bedrohungen allerdings subtiler. Aufgrund der Überschnei-
dung von vernetzten Geräten mit der Automobilindustrie, vor allem dort, wo IT-Sicherheit
auf funktionale Sicherheit trifft, ist das Angriffsrisiko nicht nur im stetigen Wandel, sondern
steigt zudem durch den verstärkten Einsatz standardisierter Komponenten sowie offener
Schnittstellen. Dadurch wird die Automobilbranche vor neue Herausforderungen gestellt.
Ein Ansatz, um Autos vor Cyberangriffen zu schützen, besteht in der aktiven Überwachung
des Fahrzeugnetzwerks, um Angriffe als Abweichung vom validen Überwachungszustand
zu erkennen. Im Rahmen dieser Abschlussarbeit wird die Anwendbarkeit einer Anomalie-
basierten Angriffserkennung auf Fahrzeugnetzwerke, im Sinne eines selbstlernenden Verfah-
rens, vorgestellt und evaluiert. Unter Verwendung aufgezeichneter Fahrzeug-Bus-Daten, wird
ein neuronales Netz trainiert, um simulierte Angriffe auf das Fahrzeugnetzwerk zu erkennen.

Contents

I Fundamentals 1

Chapter 1 Introduction 1

1.1 Motivation and problem statement . 2

1.1.1 Motivation . 3

1.1.2 Anomaly detection: The state of the art 3

1.1.3 Problem statement . 4

1.2 Self-learning of decomposed automata . 5

1.3 Outline . 6

Chapter 2 Automotive systems and automata 7

2.1 Nomenclature . 8

2.2 Automotive systems . 8

2.2.1 E/E architecture . 9

2.2.2 Controller area network . 9

2.3 Automata . 12

2.3.1 Definitions . 13

2.3.2 Properties . 15

2.4 Statistics . 18

i

II Theory 22

Chapter 3 Outliers and anomaly detection 22

3.1 Taxonomy . 23

3.2 Concepts . 24

3.2.1 Conventional . 24

3.2.2 Operational . 26

3.2.3 AI-related . 27

3.3 System modeling . 30

3.4 Summary . 30

Chapter 4 Intrusion detection as a classification problem 31

4.1 Intrusion Detection . 32

4.2 Machine learning . 33

4.3 Clustering . 35

4.4 Artificial neural networks . 37

4.4.1 Neuron . 37

4.4.2 Perceptron . 40

4.4.3 Multi-layer perceptron . 41

4.4.4 Learning . 43

4.4.5 Backpropagation . 45

III Application 46

Chapter 5 Anomaly detection in distributed systems 46

5.1 Objectives . 47

5.1.1 Anomalies . 48

5.1.2 Target system . 49

5.1.3 Original system . 49

5.1.4 Subproblem . 50

5.1.5 Complexity reduction . 50

ii

5.2 Constraints . 51

5.3 Data source . 51

5.4 Use case . 52

IV Implementation 53

Chapter 6 Self-learning anomaly detection 53

6.1 Concept . 54

6.1.1 System composition . 54

6.1.2 Automaton type . 55

6.1.3 Categorizing sub messages . 56

6.1.4 Cyclic messages . 56

6.2 Training the neural network . 57

6.2.1 Data acquisition . 57

6.2.2 Parameter extraction . 59

6.2.3 Feature transformation . 60

6.2.4 Classification and learning . 61

6.3 Testing and evaluation . 63

6.3.1 Performance . 63

6.3.2 CAN packet injection . 66

Chapter 7 Summary 68

7.1 Contributions . 69

7.2 Benefits . 69

7.3 Limitations . 70

7.4 Outlook . 71

Bibliography 72

iii

Glossary

ABS Anti-lock Braking System. Prevents the wheels from locking during emer-
gency braking and avoids uncontrolled vehicle skidding. 10

ACK Acknowledge Field. Confirmation field used to receipt a correct incoming
CAN frame. 11

Actuator Component of machines that converts the ECU’s electrical signal into me-
chanical control movement. 8

AI Artificial Intelligence. A branch of computer science where computers per-
form operations based on learning and decision making. 27

ANN Artificial Neural Network. A self-learning system which is designed after the
human brain to recognize patterns. 5, 27, 30, 36, 37, 38, 41, 43, 44, 57, 61,
68, 69

ARMA Autoregressive-Moving Average. Linear, discrete models of predictive pro-
cesses which are used for statistical analysis. 29

CAN Controller Area Network. Technology used in automobiles to link various
electrical devices. 2, 9, 10, 11, 12, 22, 23, 27, 46, 48, 51, 53, 54, 56, 57, 58,
59, 60, 61, 62, 63, 66, 67, 68, 69, 70

CRC Cyclic Redundancy Check. Safety field used for transfer fault detection. 11

DFA Deterministic Finite Automaton. State machine that changes among the
possible state input, in which it is currently located, into a uniquely deter-
mined state condition. 14

DNN Deep Neural Network. Deep learning is the name used for stacked neural
networks; that is, networks composed of several layers of nodes. 5

iv

ECU Electronic Control Unit. Controls one or more electrical subsystems in a
vehicle’s network. 1, 2, 3, 7, 8, 10, 11, 53, 66

ESC Electronic Stability Control. Electronically controlled driving assistance sys-
tem, which counteracts by braking individual wheels. 10

FlexRay Scalable and flexible high-speed communication protocol with safety and
security related features in mind. 10, 70

FSM Finite State Machine. Mathematical model of technical/mechanical machin-
ery composed of finite states, transitions and actions. FSM process character
strings and generate output. 14

ID Message Identifier. Defines the priority of a CAN message. Smaller IDs have
a higher priority on the CAN. 11, 56, 58, 60, 66, 67

IDPS Intrusion Detection and Prevention Systems. Focused on identifying possible
attacks, monitoring incidents and attempting to stop them. 31, 48, 51

IDS Intrusion Detection System. Software or device to detect attacks that are
directed against a computer system or computer network. 3, 27, 31, 32, 69,
70

IoT Internet of Things. Integration of computing capacity and communication
ability in devices, creating a network of distributed, intelligent systems. 8

IPS Intrusion Prevention System. Unlike an IDS, the IPS has no monitoring
function, but directly controls the traffic to fend off attacks. 31, 48

k-NN k-Nearest Neighbors. A classification algorithm in which a class assignment
is made in consideration of its neighbors. 28

LIN Local Interconnect Network. Low cost communication for intelligent sensors
and actors where CAN’s versatility is not required. 10, 70

MLP Multi-layer Perceptron. A neural network with one or more layers between
input and output layer. 41, 42

v

MOST Media Oriented Systems Transport. Infotainment field bus which is used to
transport audio, video, voice and data signals. 10, 70

NFA Non-Deterministic Finite Automaton. Unlike the DFA the possibilities are
not unique, therefore, the automaton is not predefined what transition is to
be chosen. 14

Node In the CAN topology each equally eligible participant is called a node. 10

OSI Open Systems Interconnection. Model which describes the communication
requirements that must be met for different network components. 10

PCA Principle Component Analysis. Statistical technique to identify hidden pat-
terns and their classification in data recordings. 21, 27

V2I Vehicle-to-Infrastructure. Wireless communication concept to realize data
transfer between automobiles and infrastructural facilities. 1

V2V Vehicle-to-Vehicle. Mobile communication technology that allows automo-
biles to directly communicate with each other. 1

vi

List of Figures

2.1 Electronic components and in-vehicle network in a modern executive car . . 9
2.2 Serial field bus topology . 10
2.3 Example input-output state machine automaton 13
2.4 Reduced example input-output state machine automaton 15
2.5 Maximal canonical automaton with ten states and nine transitions 17
2.6 Minimal canonical automaton with one state and four transitions 18
2.7 Low and high kurtosis on distorted normal distributions 21
2.8 Positive and negative skewness on distorted normal distributions 21

4.1 Simplified schematic of an IDS using statistical analysis 32
4.2 Common steps in a machine learning-based system 33
4.3 Identifying clusters in a dendrogram consisting 25 data points 36
4.4 Schematic representation of a biological neuron and its interconnections . . . 37
4.5 Mathematical representation of an artificial neuron model 38
4.6 The sigmoidal (logistic) function . 39
4.7 General perceptron model including one input and one output layer 40
4.8 Activation functions commonly in use with neural networks. 42
4.9 Multi-Layer perceptron with l layers including the input, hidden and out-

put layer . 42
4.10 Surface and contour plot showing backpropagation algorithm using gradi-

ent descent with a learning rate of 0.1 and 100 iterations 45

5.1 Outer framework of the anomaly detection system 47

6.1 Histogram showing cyclic CAN messages for the used data set 56

vii

6.2 Test vehicle for recorded traces on a connected CAN bus using on-board
diagnostics interface . 57

6.3 Open source analyzing software used for monitoring a raw CAN bus trace . . 58
6.4 Manual parameter extraction from a test drive using a parallel coordinates

plot with minimum values on bottom x-axis and maximum values on top x-axis 60
6.5 Artificial neural network structure in the proposed anomaly detection technique 61
6.6 Confusion matrix for normal and malicious CAN packet data along with

64996 recorded data samples . 63
6.7 Receiver operating characteristics to measure the trade-off between the

false positive detection and the correct classification 65
6.8 Best network performance, taken from the lowest validation error with

increasing epochs . 65
6.9 Scatter plot showing time intervals of CAN ID messages 67

viii

List of Tables

2.1 Typeface and notation of used symbols . 8
2.2 CAN bus data message structure . 11

5.1 Symbol definition of mathematical nomenclature 48

6.1 Excerpt from a recorded CAN bus data trace 59
6.2 CAN bus data packets after preprocessing using parameter scaling and

normalization methods . 61
6.3 Performance evaluation of experimental CAN message injection 67

ix

Part I

Fundamentals

Chapter 1

Introduction

This chapter is intended to give the reader an insight into the topic,
and to provide an overview of the thesis at hand, summarizing its moti-
vation, approach and the problem statement completed by an outline.

Cyber attacks targeting connected vehicles can endanger driver and pas-
senger safety. As more and more cars are getting connected to the In-

ternet it is imperative to deal with those risks before efforts in cyber crime will become vital.

With integrating embedded devices, so-called electronic control unit (ECU), most recently,
a significant progress has been made in automotive systems. Mainly for controlling an
electrical system, an ECU is not merely used for monitoring vehicular parameters but also
for enhancing its energy efficiency and reducing a car’s noise, vibration and the emission of
carbon dioxide [8]. A substantial amount of embedded devices is used to monitor and con-
trol electro-mechanical systems. Examples of such embedded systems can be seen in home
automation and modern cars. In recent times, location-based services such as vehicle-to-
vehicle (V2V) and vehicle-to-infrastructure (V2I) depend on computing devices to accom-
plish intra-vehicular communication [9] as well as inter-vehicular communication [10], [11].
These expansions of the domain of connected cars give rise to a number of security concerns.

1

1.1 Motivation and problem statement

Nowadays embedded (distributed) systems are used in several applications with wide spread
and acceptance. Moreover, they become even more important due to the fact that embed-
ded software in ECUs continues to increase in domains, complexity, and sophistication [12].
In addition, skepticism regarding software in everyday life applications, even when human
existence is at stake, is diminishing or rather moving out of people’s focus. Furthermore,
steer-by-wire techniques are used in aviation for several years now and the emerging change
in automobile motorization, i.e. the transformation from fuel driven to electrically operated
engines, can be seen as a chance to establish them in the automotive field. When software
keeps on conquering new and more responsible operational areas - and even if not - it is worth
thinking about new possibilities of recognizing anomalous behavior in the software flow with-
out delay, and with low effort in preparation, action and maintenance. The protection of
vehicular systems along with their versatile interconnection and stored data against cyber
attacks such as manipulation and unauthorized access is therefore of increasing relevance.

Data Source

As a basis of the practical part approach of this work, traces (i.e. a documented set of
all messages sent within the automobile’s network system during a defined time period)
are used, recorded in a moving car for the time been driven without apparent malfunc-
tion of any of the vehicle’s components. The system is based on a controller area network
(CAN) structure (cf. 2.2.2) and all information necessary to understand the data is given.
In order to be able to detect abnormalities in the CAN data stream or to evaluate the inter-
action between different ECUs in a vehicle’s subsystem, the data transfer on the vehicular
network and in some cases internal variables of ECUs are being recorded by data acquisition
systems (in-vehicle data-logger) during the test drives. Source of the message-protocol is
a middle class sedan. The parts responsible for the communication are the same as in an
up-to-date automobile of a major manufacturer. Although the underlying CAN [13] tech-
nology is a de facto standard for serial communication, models cannot be derived without
uncertainties. This is understood as a chance to test new approaches for model-building and
safety-related functionalities. The longest protocols include more than 1.3 Million messages
and were recorded while driving for approximately 80 minutes. The long term objective is
to use the derived models for safety- and diagnosis-functions in current and future vehicles.

2

1.1.1 Motivation

As mentioned above, distributed systems are getting progressively important in many areas
and as a result, there are a lot of use case scenarios for the concept and practical implementa-
tion for this thesis. The starting point is the aim to develop (parts of) an approach which is
capable of recognizing an intrusion as an anomaly (q.v. 1.1.3) when observing the exchange
of CAN messages between the participants of a bus system in a modern automobile. Since the
CAN bus is a very common network [14] in the field of intrusion detection for vehicular net-
works, it is used for the practical parts of the work, i.e. the experiments and the evaluation.
Possible ways of using the developed system can be split into two parts: The learning can
take place either during a test drive with live broadcasting network messages, i.e. live learn-
ing, or on the basis of a recorded trace (preprocessed learning). Since it has to be guaranteed
that the anomaly detection system is usable for other automotive network protocols than
the CAN bus, the universality thought has to be kept in mind during all considerations.
In this regard, it is an explicit objective to provide a concept and prototypical implementa-
tion applicable to other commonly used protocols next to the CAN which can be observed.

1.1.2 Anomaly detection: The state of the art

Since it is crucial to ensure correct behavior, methods used for anomaly detection in reliable
systems rely on very accurate preceding steps and require a lot of working power. A typical
straightforward approach of recognizing anomalies in a computational system is the observa-
tion and analysis of variables and parameters regarding logic and other contradictions. For
example, the brake of a car should not or could not be activated while it was accelerating.
This approach becomes significantly more complicated in case of a distributed system as the
number of possible interactions increases rapidly with growing complexity. Other methods
are known from the field of software testing. In this scientific surrounding, vast models
are usually derived from specification or by observing variables or invariants. In [15–18] an
overview of promising techniques is given. Chapter 3 provides more detailed descriptions
of several methods. The basic idea of the task in this thesis is the consideration that it
should be possible to convert the problem of detecting abnormal states in a vehicle into a
data analytic problem and, furthermore, to minimize the effort that is necessary to build a
model, when a positive behavior is learned. Regarding this, an approach is proposed in [19].

3

1.1.3 Problem statement

According to [20] most security-related attacks are either input- or output-based. In or-
der to protect an in-vehicle network against intruders, two main security approaches can
be used, cryptography and intrusion detection systems (IDS). The first-mentioned has the
ability to protect the network from external attacks by ensuring the authentication and data
integrity. On the downside, cryptography cannot prevent the threats caused by internal
attacks, i.e. intruders within the automobile’s network. The later named mechanism allows
the detection of an activity deviating from the normal behavior within the network by an-
alyzing an ECU and triggering an alarm when this ECU exhibits an anomalous behavior.
The short word descriptions below (on the basis of the keywords contained in the title)
are intended to give a first quick overview of the aim and the background of this thesis.
In the following subsection, the problem that will be solved in this work is specified shortly.
A more detailed definition of the stated problem is presented and discussed in chapter 5.

Definition 1.1.1. Anomaly: In the following chapters, this term denotes a behavior devi-
ating from the standard (the benchmark has to be stated by definition).

Definition 1.1.2. Intrusion: An intrusion refers to gaining unauthorized access or to com-
promise a (computer) system by breaking the security of such a system or causing it to enter
into an insecure state.

Definition 1.1.3. Detection: Detection means recognizing whether a specified event (e.g.
an anomaly) takes place at a certain moment.

Definition 1.1.4. Network: A network should be understood as a distributed system, i.e.
a structure with several participants and active exchange of observable messages.

Problem specification

Especially in automotive applications, the impact on one’s personal life might be significant
in case of a fault causing the car being immovable. In many cases, purely software-related
malfunction causes the whole system to fail. While faults in hardware can be recognized and
located with less effort, complex software and software-systems tend to develop unspecified
behavior, especially in scenarios which haven’t been tested before. It is widely accepted that

4

testing all possible state combinations and execution ways is - if even possible - not a conve-
nient way of analyzing software [21], [22]. This thesis has to show a possibility of observing
a distributed system and assessing if it works well. If there is a malfunction, the absence of
hardware faults suggests the presence of a software fault that may lead to the system’s failing.
A priori knowledge regarding the system enables the interpretation of the traffic on the
bus. One precondition is the existence of data traces representing drives without anomalies.
As a first step of detecting possible intruders, anomalies have to be recognized. The exis-
tence of an anomaly implies the existence of a fault. To fulfill the main task of detecting
anomalies in a stream of automobile network messages, three subtasks were identified during
the work on this thesis: system modeling, complexity reduction and model fragmentation.
As a fourth subtask the performance and quality of the concept have to be tested as well as
evaluated, i.e. measured and judged. Additionally, evaluation and verification of the learned
models by a metric (to be understood similar to a performance rating) have to be enabled.

1.2 Self-learning of decomposed automata

In order to solve the problem of representing a complex real system it is proposed to enable
the self-learning of decomposed automata models. The principle aim is to find an abstracted
data representation, which provides system access when an actual stream has to be verified.
The presented solution is based on an adapted and refined method using a deep neural
network (DNN) [23–25]. A basic multi-class anomaly detection technique using an artificial
neural network (ANN) operates in two steps. First, an ANN is trained on the normal training
data to learn the different normal classes. Second, each test instance is provided as an input
to the ANN. If the network accepts the input it is normal or otherwise, it is an anomaly.
The proposed approach is inspired by a set of algorithms with the main goal of model-
ing abstractions in data by incorporating a number of processing layers along with complex
structures or otherwise, composed of a set of non-linear transformations. The feature vectors
building the DNN structure are trained with probability-based parameters and have to be ex-
tracted from the trace. Since the message volume in distributed systems can be massive, the
data is preprocessed so that several small automata can be learned. For this reason, a clus-
tering of the individual data set is necessary, grouping events that exhibit related behavior.

5

1.3 Outline

This thesis is structured straightforward. Each chapter starts with a brief outline, allow-
ing the reader to easily follow the chapter’s content. In chapter 2 automotive systems
and automata theory are explained and concluded. Elemental definitions and assumptions
needed for the following chapters are provided and sorted likewise as the subsections as
can be seen in this introduction. State-of-the-art solutions in related problems are de-
scribed and explained in chapter 3 upfront. Chapter 4 discusses methods with regards
to machine learning necessary for the following paragraphs. Subsequently, in chapter 5
the problem statement is described in more detail and stated formally. In chapter 6, the
developed system is presented including its effectiveness. The results and possible future
works in the related field are drawn and discussed in chapter 7 which completes this work.

6

Chapter 2

Automotive systems and automata

The subsequent chapter introduces necessary fundamentals and term
definitions with respect to automotive systems together with mathe-
matical background to ensure a convenient reading of this thesis work.

130 years after the invention of the first petrol-powered automobile, modern vehi-
cles have turned from mechanical machines into complex systems of embedded

software and electronics. This is equally applicable to industrial and agricultural engines [26].

Connected vehicles, whether it comes to cars, trucks, buses or construction machinery, use
various wireless technologies [27]. With regard to this, a new set of on-board features and
value-added services offer traffic jam warnings, reduction of fuel consumption or increasing
performance. As a consequence of the shift from mechanically operated to software-driven
vehicles, and the increasing connectivity, there is a high potential for security threats in mod-
ern automobiles [28]. A possible scenario would be an attacker injecting messages into the
car’s networks, directly or indirectly controlling the desired ECU with regard to performing
various physical control operations. Another practicable situation might be the integration
of compromised subsystems into the vehicle. Compounding this, attack surfaces are rapidly
growing as more sophisticated services and features are integrated into modern vehicles [29].

7

2.1 Nomenclature

With consideration of easy comprehensibility, the used nomenclature in this thesis is intro-
duced in the following section. Scalar variables and parameters are written in italics, for
instance x, and matrices are named with uppercase letters which are printed in boldface (e.g.
X). To mark a vector, a standard arrow is used (e.g. ~x), while constants will be abbreviated
to a lowercase Greek letter such as α. Lowercase Latin letters denote a function (e.g. x). If a
letter represents a tuple, it is printed in boldface and lowercase (e.g. x). Finally, calligraphic
uppercase letters specify value sets (e.g. X). An overview of the definitions is given in ta-
ble 2.1. All these rules are not valid for indices as they are always printed in lowercase italics.

Category Symbol
Constants α

Functions x
Matrices X
Sets X

Tuples x
Variables/Parameters x

Vectors ~x

Table 2.1: Typeface and notation of used symbols.

2.2 Automotive systems

Nowadays, the majority of automotive innovations is achieved by the means of software and
electronics. Following a moderate but steady annual growth between 6 percent [30], [31] and
9 percent [32], the market for vehicle electronics is expected to have a yearly global volume
of approximately 280 billion euros by the year 2020 [33]. As the internet of things IoT links
automobiles by performing safety-critical functions without the need for human intervention,
the growing technological progress in the automobile space is becoming more central to
the act of mobility. As connected and driverless cars emerge, technologies such as Internet
connectivity will become less an accessory and more a critical component. Connected vehicles
and associated services will play an increasingly greater role, moreover, the vast number of
software operating modern cars raises the likelihood of threats and vulnerabilities [34], [35].

8

2.2.1 E/E architecture

Modern cars contain up to 80 ECUs that perform various tasks over several bus systems [36],
[37]. A typical job would be an ECU controlling the vehicle’s engine. The main function is
to get information from a multitude of sensors. This input is used to calculate control values
and run certain actuators to enforce the actions determined by the modules. Several ECUs
need to exchange data among themselves, share values and verify with each other during
the vehicle’s normal operation, resulting in a complex network of hard- and software sub-
systems [38] distributed by a diversity of suppliers [39]. The electric and electronic parts to-
gether with the corresponding network inside a modern executive car are shown in figure 2.1.

Figure 2.1: Electronic components and in-vehicle network in a modern executive car [40].

2.2.2 Controller area network

With the developments taking place in the electronics and semiconductor industry, mechan-
ical in-vehicle systems were being replaced by more robust systems with improved perfor-
mance. Providing a mechanism which is incorporated in the hardware and the software,
the CAN is a common vehicular bus system used in European petrol and diesel vehicles
since 2001 and 2004 respectively [41]. It is also adopted in other safety-related fields such as
industrial automation and vehicle engineering in addition to aviation technology. The main
functionality is to connect all the electronic components in a car. Before CAN, in-vehicle

9

devices were connected using point-to-point wiring. Most important for the thesis at hand
is the CAN’s message structure. To provide a better understanding, additional background
information is given, for example the electrical properties. Developed in 1983, the German
company Robert Bosch GmbH is still extending the CAN specification in order to improve
the quality of automobiles thereby making them more reliable, safe and fuel efficient [42].

Bus structure

The standard defines four layers (application, physical, transfer and object layer) which
correspond to the abstraction layers in the open systems interconnection (OSI) model [43].
Since CAN is an event-triggered controller network serial field bus communication, it ex-
hibits the associated topology (cf. figure 2.2), so that two wires connect all participants [44].
Principally, all of them are directly connected to each other as the information is transferred
to a so-called broadcast communication, which means that the transmitted information is
received by all ECUs also known as nodes [45]. This configuration guarantees a simple
extension or reduction of an existing embedded system, hence, a new member can just be
added to the bus lines, as long as the bus load does not tend to cross the limit of other nodes.

Figure 2.2: Serial field bus topology.

CAN architecture in automobiles

Typically, an automobile network is formed by different on-board buses around specific
domains, namely connecting cabin control functions (e.g. window lifters, heating and ven-
tilation system) and the powertrain [46]. The latter provides the interlinked functioning

10

of safety-critical components, such as engine management, anti-lock braking system (ABS)
and electronic stability control (ESC). Nowadays, the requirements of multimedia, scalable,
safety and security-related functions within automobiles is tending upwards in response to
increased demands. This field is dominated by other bus systems like the media oriented
systems transport (MOST) [47], local interconnect network (LIN) [48] and FlexRay [49], to
improve the quality of automobiles thereby making them more reliable, safe and fuel efficient.

Message structure

A CAN message is packaged in a CAN bus specific format. This packaging is referred to as a
frame and consists the message identifier (ID) indicating who is intended to read information
and data (cf. table 2.2). Depending on the frame format (base or extended), the identifier can
be represented by 11 or 29 bits. The underlying message structure is equivalent to both the
standard and extended CAN version. As the data field length can be varied, it is necessary to
transmit a variable that encodes this information. In addition, some standard indicators are
used, such as control field, cycling redundancy check (CRC) and acknowledge field (ACK).

Start Frame ID Control Data CRC ACK End Frame
1 bit 11 or 29 bits 6 bits up to 64 bits 16 bits 2 bits 7 bits

Table 2.2: CAN bus data message structure.

When it comes to a CAN system, no master is controlling individual CAN nodes that have
permission to write and read data on the bus [50]. When an ECU is ready to broadcast
data, on the first place, the bus is checked on the condition of being busy, only then a
message is written onto the bus network. The frames that are sent over the bus typically do
not contain information of either the sending ECU or any of the intended receiving nodes,
on the contrary, a uniquely provided ID labels the frame throughout the CAN. All nodes
associated with the network receive the frame, and depending on the frame’s identifier, each
ECU on the network decides whether to reject or accept the received data. In the case where
different nodes are trying to send a message onto the CAN bus simultaneously, the node with
the uppermost priority is automatically granted bus access [51]. Before trying to broadcast
again on the CAN, nodes with low priority must wait until the bus becomes available.
In this way, deterministic communication among several nodes is ensured over the CAN bus.

11

Electrical and mechanical properties

An electrically implemented arbiter guarantees that messages with the highest priority are
transmitted earlier than those with less priority. Due to the broadcast nature of the CAN bus,
all ECUs receive a message and decide whether the content is of interest [52]. The messages
uses a scheme of bit-wise arbitration to control access to the bus, and each message is tagged
with a priority. The lower the associated CAN identifier, the higher its priority. Low-priority
messages are overwritten and send cyclically until they are acknowledged by the recipients.
Data is written onto the bus which is instantiated by two or three cables (the signals are
often represented on differentially transmitting cables and an optional ground wire). Rules
regarding voltages and mechanical properties of connectors which have to be used do not
exist within the primal norm but some quasi-standards evolved over time. Regarding some
questions the norm document is ambiguous. Neither the logical dominance nor the related
physical values are defined. Several implementations are used by engineers. Zero-dominant
and recessive solutions can be found, mainly using 3.5 or 5 volts defining the necessary
voltage level [53]. When nothing is transmitted, the recessive voltage level can be measured
on the bus wire. These design decisions have consequences regarding the abilities of this
type of bus system: Data rates from 125 kbit/s to 1 Mbit/s are possible when using a CAN
bus cable that is not longer than 40 meters. However, larger payloads improve the protocol
efficiency and lead to a higher throughput, targeting an average data rate of 2.5 Mbit/s [54].

2.3 Automata

This section briefly introduces fundamentals of automata as it deals with designing abstract
self-propelled computing devices that follow a predetermined sequence of operations auto-
matically and needed for considerations in later chapters. The most important distinction
has to be made between the two types of automata which are named after their inventors:
Mealy and Moore [55]. The differences concern the interpretation of transitions and states.
When talking about a Mealy machine, a transition represents the input or output of a sym-
bol while a state implies the history of states or symbols, respectively. A Moore automaton
defines them contrarily: A state stands for a symbol’s absorption/emission while a transi-
tion only depends on the past events. Figure 2.3 shows an example machine, specifically an
input-output state machine, meaning that every transition is associated with two symbols,
where for each possible input every given state has one, more than one or no transition.

12

If an input matches a transition for the currently present state, the machine changes to the
state that transition points to. Such a machine works as an acceptor and emitter simulta-
neously: A validated input sequence is responded with a corresponding sequence of output
events. In order to model collaboration between components of groupware systems and their
interconnections, in figure 2.3 the automaton depicts all relevant properties of such a con-
struction. These formalized properties of automata are highlighted in the following section.

Figure 2.3: Example input-output state machine automaton.

2.3.1 Definitions

An automaton is a tuple [56] exhibiting the form:

a = (Z,A, d, z0(,ZF)) (2.1)

Mathematical terms are stated subsequently following the rules presented in section 2.1.

13

• Letter l ∈ Alphabet A – A letter is an element of the alphabet. Every symbol
equals one letter.

• Symbol s ∈ A – A symbol is emitted, absorbed or both when a transition or state
is activated, respectively (cf. [55]).

• State zn ∈ Z – The black nodes depicted in figure 2.3 are called states. z0 is the
starting state, while ZF contains all final states in case of a finite state machine.

• Transition tij ∈ T – Two states are connected by a transition represented by
an arrow in the picture. More common is the denotation as transition function
d : Z ×A −→ Z.

• Word w ∈ L – A word is a sorted tuple of symbols absorbed or emitted by an
automaton.

• Language L – The set containing all correct words (related to the automaton) is
called its language. It is a regular language iff : |L| ∈ N.

Finite State Machines

There are several types of automata. An utterly important one is the finite state machine
(FSM), whose special property is the existence of finite states which represent ending points
of words and reacts to occurring events [57]. The nature of the reaction depends on the
currently active state and the event. Possible responses are performing actions that change
variables or the system to a different state. Thus, a lamp, for example, can be situated in
the state of ON or OFF, in this case, a switch would trigger events enabled and disabled.
Usually, FSMs are represented with the aid of models to define the operation in a clear
and comprehensible manner. A standard FSM has one starting state. Another important
aspect is the property whether only one symbol can trigger a change, or if probabilities
define which symbol is used. According to these characteristics, they are called deterministic
finite automaton (DFA) and non-deterministic finite automaton (NFA), respectively. Most
systems can be realized with the help of FSMs, however, it is certainly appropriate whenever
the complexity of their functionality exceeds a certain level, to rely on an advanced model.
Specifically, the adoption of nested states often facilitates the modeling of complex systems.

14

2.3.2 Properties

Equivalence

A minimal representation exists for every system. Figure 2.4 shows the reduced automaton
representing the same system as the state machine in figure 2.3. The property which has to
be equivalent is the set of valid words. The example can be retraced when state A* is under-
stood as the given starting point. Since the depicted automata are based of both inputs and
outputs, an accepted word has to result in the same outcome, i.e. a chain of ones and zeros.
Figure 2.4 shows that a smaller (5 states and 10 transitions) and a bigger automaton (q.v.
2.3) (7 states and 14 transitions) can represent an equivalent (identical) system behavior.

Figure 2.4: Reduced example input-output state machine automaton.

Definition 2.3.1. Homomorphism: This term implies the relationship between two au-
tomata, when both accept the same language but do not show equal properties concerning the
structure, i.e. states and transitions. The mapping described has to be valid in one direction.

Definition 2.3.2. Isomorphism: When the mapping mentioned above is invertible, two au-
tomata with the same language can be considered isomorph. Isomorphism exists between
two machines, if they differ in the their state’s name and otherwise exhibit the same behavior.

15

Graph properties

The theory of graphs provides several useful attributes for the description of automata [58].
All of them can be used for complete graphs as well as for subgraphs, thus for only some of
the objects and links. Every automaton is a directed graph, for the reason that a transition
works only in one direction. It can be symmetric but in most cases it is considered as
asymmetric, otherwise there would have to be either two or no vertices between two states.
Concerning the structure of a graph, cyclic graphs (also: circular or cycle graphs) can be de-
fined by the fact that all states are periodic, because all of them lie within a circle structure.
A graph is called recurrent, when all objects are reachable several times in a finite amount
of time, while states which can be reached only once are called transient. If a subgraph is
cyclic and is defined by a subset of states which cannot be left, it is called ergodic. When
the subset has only one member, it is denoted absorbing. A good possibility to evaluate the
inner connectivity are the following attributes: A directed graph is weakly connected, if all
objects can be reached from every other state, without respecting the direction of the tran-
sitions. If this is the case when the directions are respected, the graph is strongly connected.
A graph which is strongly connected cannot be reduced and is therefore called irreducible.

Discrete event-based systems

Modeling of a system in discrete event-based manner is the application of automata theory
driven by electrical engineering [59] and automotive systems [60]. Other common tools are
Petri nets [61] and Markov models [62–64]. The most important characteristic are time-
dependent states that are modeled with real-time requirements. A possible application field
is usually the representation of dynamic systems that are modeled by finite state automata.
Petri nets, named after Carl Adam Petri, are an extension of standard automata, providing
possibilities to represent parallel and/or dependent processes with less objects. Another
common name is place or transition net which imply the basic principle of such nets: Three
types of objects are necessary to build a Petri net, namely transitions, directed arcs and
places. The arcs connect a transition and an output or input place depending on its direc-
tion. Every place can be marked by one or more tokens. Transitions fire as soon as all of their
input places are marked by at least one token and transfer them to the output places. Since
a transition stops the ongoing of the process until all necessary places are marked, it is most
certainly that parallelism and dependencies can be modeled in a straightforward manner.

16

Hierarchies

Automata which represent complex systems can have a very large extent. It is possible to
describe systems of any complexity, but with increasing size it can be reasonable to introduce
hierarchies. Two ways of abstraction are conceivable: The different levels can map actually
existing system levels, so that the machine on the uppermost level represents the overall sys-
tem. The second possibility is to use several automata to distinguish between different time
domains. In the second case mentioned before, one machine is running for a defined period
of time until it is replaced by another machine representing the subsequent period of time.
Both possibilities explained use a number of smaller automata to describe a larger system.
As a consequence, a connection between the smaller machines becomes necessary. This can
be solved by introducing a normal transition or by using a completely different technique.

Canonicity

When automata are intended to represent a certain structural behavior, some further crite-
ria have to be defined. Otherwise canonical automata will be the straightforward solution.
Without stating constraints concerning quantity of states and transitions or complexity, the
easiest suggestion would be a maximal or a minimal canonical automaton. The first type
exhibits the following properties: One starting point leads to n (n = |L|) sub-chains, each
is as long as the word that it stands for (cf. figure 2.5).

Figure 2.5: Maximal canonical automaton with ten states and nine transitions.

17

A minimal canonical automaton is created even with less effort. It consists of one state node
with m (m = |A|) transitions pointing at it (cf. automaton with one state in figure 2.6).

Figure 2.6: Minimal canonical automaton with one state and four transitions.

2.4 Statistics

Statistics can be considered as the fundamental basis of this thesis. The used standard for-
mulae and methods [65] are listed in the following itemization in order to introduce the topic.

Standard metrics

The simplest but probably most important metrics in statistics when analyzing a sample set
X = {x1, ..., xn} are:

• Arithmetic mean – The arithmetic mean x is commonly referred to as an average,
obtained by adding quantities together and dividing the sum by the quantities’ value.

x =
n∑
i=0

(
xi
n

) (2.2)

where x is the arithmetic mean, xi represents a group of values and n is a total of
numbers in a data set. The peak of a Gaussian distribution corresponds to this point.

18

• Variance – The variance represents the width of the distribution function at the base
of the graph (in contrast to kurtosis) indicating how widely the existing values are
dispersed around the mean:

s2n−1 =
1

n− 1

n∑
i=1

(xi − x)2 (unbiased) (2.3)

s2n =
1

n

n∑
i=1

(xi − x)2 (biased) (2.4)

where s2 denotes the sample variance, x is the sample mean, xi represents the ensemble
of all possible samples and n is a total of numbers in a data set.

• Standard deviation – The standard deviation s is the square root of the variance s2:

s =
√
s2 (2.5)

• Coefficient of variation – The coefficient of variation c assesses the size of the stan-
dard deviation s in relation to the size of the arithmetic mean x of the population:

c =
s

x
(2.6)

• Linear regression – The main goal is to create a model/function hθ that is trying
to map the input x, namely the independent variable to an output data ŷ, called the
dependent variable. We assume that the numeric output is the sum of a deterministic
hypothesis function of given model parameters θ0 and θ1:

ŷ = hθ(x) = θ0 + θ1x (2.7)

• Cost function –When referring to a minimization problem, the cost function J(θ0, θ1)

measures the accuracy of the hypothesis function by taking an average of given inputs
x compared to the actual output y. The overall objective is to minimize the parameter
values θ0 and θ1 so that our mean x of the squared difference of x and y is rather small.
As a computational convenience, the mean of the total number of training examplesm is
halved

(
1
2m

)
so that the derivative of the used square function will cancel out the 1

2
term.

19

This function is also known as the squared error function or mean squared error function:

J(θ0, θ1) =
1

2m

m∑
i=1

(ŷi − yi)2 =
1

2m

m∑
i=1

(hθ(xi)− yi)2 (2.8)

• Gradient descent – Used for automatically minimizing the cost function and improve
its parameters θ0 and θ1:

θj := θj − α
∂

∂θj
J(θ0, θ1) (2.9)

where α represents the learning rate number and controls how aggressively gradient
descent is and ∂

∂θj
J(θ0, θ1) denotes a derivative term which updates the parameter values

θ0 and θ1 simultaneously.

When applied to a regression problem, gradient descent can be derived as follows:

repeat until convergence: {

θ0 := θ0 − α
1

m

m∑
i=1

(hθ(xi)− yi) (2.10)

θ1 := θ1 − α
1

m

m∑
i=1

((hθ(xi)− yi)xi) (2.11)

}

where θ0 is a constant that changes simultaneously with θ1, m is the total size of the
training examples and xi, yi are specific values of a given training set.

• Central moments – The first moment equals the mean, the second central moment is
the variance. While the third standardized central moment is the skewness, the fourth
standardized central moment denotes the kurtosis.

• Kurtosis – The kurtosis measures the dispersion of the whole distribution around the
mean. In figure 2.7 the kurtosis is low in the upper diagram on the left, while it is high
in the diagram on the right. The higher the kurtosis, the larger the part of the variance
that is a result of infrequent extreme deviations, i.e. there are more outliers in the data.

20

9/14/2016 Preview

1/1

Figure 2.7: Low and high kurtosis on distorted normal distributions.

• Skewness – This parameter indicates whether the variables are distributed evenly and
symmetrically around the sample mean. In the left diagram on the top in figure 2.8 the
skewness is positive, in the diagram below it is negative.

9/14/2016 Preview

1/1

Figure 2.8: Positive and negative skewness on distorted normal distributions.

Principle Component Analysis

The principal component analysis (PCA) [66] provides a possibility of minimizing the prop-
erty dimensions of a data tuple, so that the membership to a certain class still can be defined
with certainty. In the end, it is a geometrical technique. The coordinate system can be trans-
formed so that one or more axes are removed, if an equivalent clustering is possible without
the axis or axes in question. A more detailed introduction to PCA is given in section 3.2.3.

21

Part II

Theory

Chapter 3

Outliers and anomaly detection

This chapter emphasis the properties of data recordings from observing
vehicular bus messages, introduces the term anomaly and relates it to
the terms error, fault, and failure. It further surveys different tech-
niques commonly used in the area of anomaly detection and diagnosis.

Anomaly detection, as concerned in this thesis, addresses the prob-
lem of recognizing and exposing abnormal behavior when

observing the data exchange of in-vehicle network bus messages in a modern automobile.

An abnormal behavior of a system is referred to as anomaly [67]. Alternative names similar to
the term anomaly used in research are outlier, novelty [68] and discordant observations [69].
Anomaly detection basically implies noticing what does not normally happen. For example,
in a data set of credit card transactions, it may indicate fraud [70]; in health care, an
outlier may express a significant deviation from a patient’s normal behavior [71]; in image
processing, anomalies may point to abnormal patterns or textures, for example, handwritten
digit recognition [72]; in network security an anomaly may reveal intrusion attempts in a data
set of network traffic [73]; in automotive security due to observed fraudulent injected bus
messages or errors during test drives to detect anomalies from in-vehicle networks [74], [75].

22

3.1 Taxonomy

Essential terms which frequently occur in the area of anomaly and fault detection have to
be clarified. The description of anomalies from [76] is adapted in order to describe outliers
from vehicular network CAN bus messages.

Definition 3.1.1. Anomaly: In the following chapters this term is understood as behavior
deviating from regular test cases without malicious CAN data packages.

Definition 3.1.2. Error: The difference between the true (i.e. real) value of a variable and
the value measured directly or indirectly, is known as error.

Definition 3.1.3. Fault: A fault is the existence of a gap between the specified and the
actual behavior observed.

Definition 3.1.4. Failure: The status of a system when it is not working any more, without
further detailed definition of cause or consequences, is called failure.

Definition 3.1.5. Detection: Recognizing whether a specified event (f.e. a failure) is taking
place in a certain moment is referred to as a detection.

Definition 3.1.6. Diagnosis: Detection including an interpretation of the recognized event,
i.e. determination of location and type, equals diagnosis.

Definition 3.1.7. False positive: When a judgment rating something as positive is wrong,
this is a false positive.

Definition 3.1.8. False negative: When a judgment rating something as negative is wrong,
this is specified as a false negative.

Definition 3.1.9. False reject: This term denotes the fact that an attribute is rejected even
though it should be accepted. In the following, this is the case when an anomaly is detected
in an actually correct set of symbols.

Definition 3.1.10. False accept: This term denotes the fact that an attribute (e.g. set of
symbols) is accepted even though it should be rejected.

Definition 3.1.11. Malfunction: A fault which is present only temporarily, possibly emerg-
ing periodically, is termed a malfunction.

23

Definition 3.1.12. Symptom: The deviation of an observable variable from expected be-
havior is known as a symptom. The effect does not have to have any logical connection to
the source, thus it can be very challenging to trace back the explicit malfunction to its cause.

3.2 Concepts

Anomalous states in vehicular networks can be detected in two different ways. On the one
hand, anomalies can be detected from the raw data stream or based on features extracted
from data itself. For the purpose of reducing the dimensionality, raw data can be prepro-
cessed [77] on the other hand data can be transformed to an alternative representation [78].
Since the objective of this thesis at hand is the detection of possible vehicular network intru-
sions by recognizing anomalies, common anomaly detection methods are described in this
section. While methods which already found their way into applications are presented, also
approaches which are in the focus of current research are discussed. In every subsection, the
difficulties and restrictions of the methods are illustrated (these considerations are completed
in the subsequent chapter). A final remark of introduced concepts is given in paragraph 3.4.

3.2.1 Conventional

Methods which make use of knowledge regarding the relationship between values enabled
by human reasoning, can be described as conventional detection methods. Mainly variables
defined within a closed system are observed to derive a judgment regarding the system’s state.

Logical reasoning and thresholds

An utterly common approach in the area of detecting anomalies is the observation of all
variables involved [79]. Thresholds have to be defined a priori, so that an anomaly is evident
when a value exceeds or falls below a limit. A considerable disadvantage of this method is
the fuzziness of the thresholds and the resulting fuzziness of the detection. One possibility
to improve the technique is to add a logical reasoning, which has to decide if a combination
of values is reasonable or not. By doing so, system states can be defined depending on
different parameters measured. Redundancy in measuring can guarantee that the estimated
state is true; for example, the statement that a car is driving can be verified by an internal

24

velocity merit but also with gyroscopes integrated in other components. This can help to
preclude harmful behavior of the system’s software, e.g. violating previously fixed conditions.

Observing the development of values

In [80] a method is developed which allows to recognize and understand the development
and trend of qualitative (observable) values. The term qualitative values, that is introduced,
already implies the basic idea: The abstraction of information contained in the variables.
The most important objective is to reduce redundant data. The arising qualitative model is
then used for a real-world application, namely the detection of emission-related failures in
a passenger vehicle. In this scenario, a model-based reasoning method uses the qualitative
values for the judgments. In conclusion, this approach combines the later mentioned meth-
ods of formalized software verification (cf. [81]) and the observance of values described above.

Fault screening

Abreu et al. [82] present a method of verifying a symbol stream by using fault screeners.
A Bloom filter, a bitmask and a range screener are discussed and utilized for spectrum-
based fault localization. The main idea of these methodical suggestions is the use of generic
invariants while the performance overhead is kept as low as possible to ensure computational
efficiency for embedded systems. The three techniques work as follows:

• Bitmask screener – This method observes a string of bitwise representations of system
variables. Due to the bit level operations it is a considerably promising tool.

• Range screener – In analogy to the conventional fault detection mentioned above,
variables are observed regarding the violation of thresholds.

• Bloom filter – In this case values of variables are bit masked, furthermore, mapped
into an allocated memory space by two hash functions. If an address was not written
during the initialization phase, the value is invalid. Due to the used hash functions some
of the unique addresses can be mapped for different values. This results in memory opti-
mization, but it also involves probabilistic uncertainties of the Bloom filter’s judgments.

25

The evaluation of the above mentioned methods leads to the result that two of them can
be used for anomaly detection, but show different performance depending on the scenario.
The bit mask screener is identified as the least favorable working concept, while the range
screener works more promising than the filter except for cases with a huge amount of data.

3.2.2 Operational

The concepts mentioned in the following have been developed in the environment of soft-
ware engineering to provide tools to test software after the development process is com-
pleted. Usually, a detailed software documentation is necessary in order to enable their usage.

Software verification

Formalized methods known from software engineering provide ideas and concepts which
seem to be helpful in solving the problem of this thesis (cf. chapter 5). The fundamental
basis of the presented techniques is a model representing the system. There are several
possible methods to derive such a model. In [83] and [84] two of them are presented. The
main reason why the concepts cannot be applied as they are, is the fact that information
from and about the development process is needed [85], moreover, the representation of
not yet observed states, e.g. future states for which predictors are available, is necessary.

Conformance testing

Conformance testing is a broad field with different methods that are commonly used [86]. In
contrast to software verification, the system is tested using a standard where the aim is to
check the system to a given specification. The question which has to be answered is whether
the system meets this norm or not. Nevertheless, it cannot be applied to the problem
discussed in the thesis at hand due to the same reasons as described in the paragraph above.

26

3.2.3 AI-related

Different strategies known from artificial intelligence (AI) already found their way into the
field of anomaly-based intrusion detection. Approaches that can be used for raw CAN bus
data have been proposed in the literature that are presented and discussed in the following.

Artificial neural networks

An ANN is a sum of formulas weighting different properties of an object which has to be
classified [87]. For supervised learning tasks, these weightings can be adapted, i.e. learned so
that objects are labeled when the application is executed. In anomaly detection this labeling
is either a reject or an accept. One problem that arises is the synchronization process that
is necessary to get the ANN running. A more detailed view on ANN is given in chapter 4.
In [88], a concept is presented using an ANN that is trained with parameters based on fea-
tures that are derived from a CAN trace. More precisely, an artificial network for given CAN
data provides the likelihood of classifying normal and malicious data, and, thus the system
can recognize any potential attack such as network intruders or deliberately injected packets.

Data mining

The term data mining is used to describe the systematic application of statistical methods
to large data sets, also known as “big data”, with the aim of identifying new interconnections
and trends to gain benefits from data [89]. Such assets can not be processed manually, so one
needs computerized methods because of their size. The common approach is to classify sys-
tems by directly observing properties or invariants. This means that values are represented
in a multidimensional feature space and thereafter data mining techniques are exerted. Fur-
thermore, visualization can be used for various data mining tasks such as cluster detection,
classification or pattern discovery, and hence can be used for anomaly detection in IDS [90].

Principal component analysis

Introduced in chapter 2, PCA offers a possibility to reduce the amount of attributes required
to classify an object. However, one drawback arises when trying to apply this technique to
the problem described in chapter 5. In contrast to the data which can be directly used
for the issues at hand, the amount of information is immense. Since every system can be

27

described in an abstracted way, it can be represented by data points in several dimensions.
If there were a lot of dimensions spanning this configuration space, it would be possible to use
a PCA to determine which dimensions define the system sufficiently. Since only timestamps
and associated data are accessible values, using a PCA would not offer a substantial benefit.
However, if a lot of positive traces are available, an arbitrary modeling technique can be used
to map the system. When a metric is employed to rate the resulting model, it can be used
as an additional dimension. As a result, traces that are necessary for a sufficient learning
can be evaluated. As only a few recorded CAN traces are available, this concept is rejected.

Instance-based techniques

Instance-based techniques such as k-nearest neighbor (k-NN) are used to classify unseen data
to one of the classes normal or abnormal [91]. As with many non-parametric algorithms, in-
stances are represented as points in a multidimensional feature space. An instance is defined
on the basis of the data’s attributes. Each attribute represents an axis in the multidimen-
sional space, where the number of occurrence of the attributes is merged into a point vector.
The decision is made in the k-NN method, as the name already clearly suggests, to classify
the new reference to the closest data point. Classification is based on the distances to in-
stances in a knowledge base. Either the entire time series or feature vectors can be stored
in the k-NN knowledge base. The calculated distance can then be used as an anomaly rating.

Rules or decision trees

A decision tree is a representational form for a classification rule, by means of where objects
can be divided into classes. Used for classification and regression, decision trees can be used
as a non-parametric learning technique. A tree is designed so that an attribute in each node
is queried, and a decision is made, until a leaf is reached. A leaf represents a node at which
no further branching is performed. This is where the classification can be read, therefore,
rules and decision trees are also called classification trees. The foundation for building a
decision tree is a training data set whose class membership is known. In general, the learn-
ing examples are characterized by a fixed number of attributes, each having a finite number
of forms and a classification which indicates the possible decisions. In contrast to pattern
recognition, decision trees deal with discrete attribute values. According to the interval logic
in [92], temporal classification rules can be discovered [93] and a decision tree can be created.

28

Clustering

Classification techniques such as k-means algorithm can be used to find clusters of nor-
mal data [94] and detect clusters between sequenced events and subsequences respectively.
K-means provides a classification in groups, which have according to a global level, optimal
homogeneity among all groups, having a predetermined number of clusters. The discovery of
hidden relations between event sequences involves following steps, namely: the representa-
tion of the data in an applicable form, the interpretation of analogies between sequences and
subsequences, and the utilization of derived models to substantial problems in data mining.

Hidden Markov models

A hidden Markov model is a representative statistical model that can be used to model data
which is sequential in nature. In a hidden Markov model (Markov process), a finite set of
states can be trained to determine whether the order of subsequences is normal or abnor-
mal [95]. It consists of hidden states X, possible observations y, a denoting state transition
probabilities and output probabilities, characterized by b. Each of these states at any time
emits a randomly selected visual symbol or so called visible state. To an external observer,
only the outcome, not the states that is visible, hence, states are hidden to the outside.
Hidden Markov model strategies may also be used for detecting possible intrusions by pre-
dicting the hidden state (attack) from relevant observations such as changes in system pa-
rameters, fault frequency, etc. In [96] an approach is proposed that uses a multivariate
Gaussian model. The proposed system correlates the usage and activity profile observa-
tions and state transitions in order to predict the most probable intrusion state sequence.

Autoregressive-moving average (ARMA) models

ARMA models [97] can be used to fit a model to either the entire time series data or sub-
sequences. When dealing with non-static series, taking the transformation to stationarize
the series, anomaly detection can then be done based on distances between the model pa-
rameters or on the probability that a sequence is created by a certain model. The main
properties of an autoregressive and a moving-average model is the correlation between time
series objects at a given time point. In [98] it was shown to work, but is not viewed as a
promising approach since the order and the coefficients of the models have to be determined.

29

3.3 System modeling

An important issue in anomaly detection is the system modeling that is used as a basis for
verification. A convenient but also time-consuming possibility to model a system manually.
This includes several steps in an effortful process. All possible states and possible transitions
between them have to be identified and all relevant input has to be defined. Information
is extracted from the system specification and documentation as well as by observing the
system’s behavior. A system modeling of this kind requires a lot of knowledge regarding
actual and intended behavior. An expert involved in development and testing is mandatory.
Model-based diagnosis (MBD) summarizes the methods mentioned in the previous subsec-
tion, since they all base on a model representing the system being observed. Often automata
(q.v. 2.3), Petri nets (q.v. 2.3.2) or other abstraction tools are used to represent the systems.

3.4 Summary

This chapter discussed properties of anomaly detection, introduced related terms and ap-
proaches to automata learning. Summarizing the descriptions above with regard to the
actual problem, which has to be solved by the thesis at hand, the following can be assessed.
Systems used for the purpose of detecting anomalies that are independent of architectural
details do exist but do not apply entirely to the problem presented in the following chapter.
Conventional techniques need a lot of information regarding the system. Even if every piece
of information is available, most of the modeling has to be done by hand, if it is not accessible
in a formalized manner. Other deficiencies can be seen concerning the use of hidden states,
features and structures. The substantial problem that concerns the methods entirely is the
fact that specifications or hand-modeled system representations do not contain all system
states which exist in reality, because further information regarding the system’s model were
not accessible in the development process and would exceed the limits of this thesis at hand.
A method which manages the learning of an overall distributed system from malicious
data packets, represented by future behavior depending on past messages, could be found.
For predicting and classifying packet data, ANNs had been investigated by [99–101]. Since a
user-driven approach on modeling a large data set does not suite well to the aim and actual
problem (cf. section 1.1), an approach capable of learning from sample data is necessary.
Therefore, machine learning and classification theory are discussed in the following chapter.

30

Chapter 4

Intrusion detection as a classifica-

tion problem

This chapter discusses intrusion detection using classification tech-
niques. The topic intrusion detection is surveyed, fundamentals of ma-
chine learning are given, and artificial neural networks are introduced.

Research works considering safety problems in vehicular network com-
munication is a long-standing objective in the security field

[102]. IDS gain much attention due to the ease of detecting attacks caused by intruders [103].

In [104], an IDS approach is proposed where numerous applicable attacks, predefined in
a database, are applied. According to [105], a method, based on specifications, compar-
ing the specification system’s current behavior to the predefined patterns, is developed.
As stated in [106], various sensors, designed for attack scenarios, are used for detecting
network intrusions. In [107] as well as [108], protocols that are secured under the terms
of commonly used specifications are proposed. In order to deal with the emerging prob-
lem, statistical-based IDS techniques are considered to a large extend for communication
networks. In [109] statistical features are captured and applied to detect cyber attacks [110].

31

4.1 Intrusion Detection

The goal of intrusion detection is to filter out all events, taking place in the monitored
area, those that indicate attacks, attempted misuse or security violations. An IDS can
be defined as a file of tools, methods and sources helping reveal, record or announce the
attempts on network intrusions and attacks [111]. IDS operate on the network layer and
usually they are passive systems which are not aimed at attack prevention. The primary
purpose of IDS developing is to reveal the attack, not to execute appropriate measures to
avoid it. Systems trying to avoid attacks are called intrusion prevention systems (IPS).
With regard to the development, some of the functions have grown up to prevention mea-
sures against attacks, and then several IDS become active. They were renamed as intrusion
detection and prevention systems (IDPS) [112]. Any use of prevention functions should
be indicated in IDS records. Patterns of abnormal behavior are many; however, in gen-
eral, they include unneeded, harmful or illegal activities occurring within the system. We
distinguish two main methods of intrusions detection, i.e. misuse detection and anomaly
detection [113]. According to the principle of activity, intrusions detection can be divided
into three groups: signature-based IDS, anomaly-based IDS and hybrid systems (cf. [103]).

Figure 4.1: Simplified schematic of an IDS using statistical analysis.

Anomaly-based IDS take a different approach to intrusion detection. By analyzing/learning
network traffic and processing the information with numerous statistical algorithms, anomaly-
based IDS look for anomalies in the normal network traffic patterns, illustrated in figure 4.1.

32

4.2 Machine learning

Algorithms and ideas from the field of machine learning (cf. [87]) are closely related to the
field of statistics and help refining algorithms as well as understanding dependencies in data.
The commonly applied steps in a machine learning based system are illustrated in figure 4.2.

Figure 4.2: Common steps in a machine learning-based system.

The first action is the data acquisition step, which comprises obtaining and selection of data
sets. Optionally, the input data can be preprocessed, for example by re-sampling or removal
of invalid data. Following that, a further optional step is the transformation of the data
set to an alternative representation that, for example, allows for better distinction of classes
or for more efficient processing. Examples are the mapping of the floating point values of
a time series to a limited number of digits or symbols, e.g. using HOT SAX (cf. [69]), or
the transformation to frequency domain using Fourier or wavelet transformation. Subse-
quently, a vital step is the extraction of features, a machine learning algorithm can work on.
As a final step, the features relevant for the given machine learning task are selected.
Today, this scientific field is emerging and conquering more and more areas. It combines dif-
ferent disciplines, furthermore, it becomes increasingly popular due to the vast possibilities in
applications such as computer vision [114], natural language processing [115], robotics [116],
video games [117] and search engines [118]. The long term goal is to imitate learning be-
havior of biologic systems like the human species. To this day, software is merely inter- and
extrapolating data points that represent change over time. Very important definitions taken
from [119], which are confused frequently, are given in the following listing and paragraphs:

33

• Live/preprocessed learning – This modus defines whether the learning takes place
when the system is running in its application environment or under laboratory settings.

• Online/offline learning – This term is used differently depending on author and
field of research. In this thesis, it has to be understood in connection with the learning
process: offline means that the learner is provided with observation sets which are
categorized. Online signifies that the learner is continuously supplied with sets and
shortly after it with associated labels (cf. reinforcement learning).

• Active/passive learning – This distinction is made regarding the question whether
a learner can influence data source. A good example is the simulation of an input to
measure the related output for example a black box principle.

Overfitting

The phenomenon of overfitting occurs if a learned model fits the data used for the learning
progress too well. This means that for example a mathematical function, which describes
the data very well or even too well, cannot explain other related data. A lot of effort has to
be put into the decision which level of detail has to be represented by the model at maximum.

Pattern recognition

Pattern recognition can be considered as the part of machine learning which concentrates
on recognizing and understanding patterns in data, e.g. pictures, emails or abstracted infor-
mation. For this purpose, features have to be defined which are responsible for the creation
of a pattern. For example, edges and corners are often used in the field of computer vision.

Supervision

Machine learning can be separated into two main fields: The unsupervised and the super-
vised strategy. The latter’s idea is to recognize defined properties from examples taken from
a database, using them to improve the capabilities of recognizing samples. The examples
are categorized by a supervisor before. Thus, regression and prediction can be classified as
supervised learning problems, while clustering and pattern recognition are part of the cate-
gory unsupervised learning. A highly relevant difference between those two is the possibility
of verifying and evaluating the result [120], which is not possible for unsupervised problems.

34

4.3 Clustering

Clustering is a sub field of machine learning and can be applied in supervised learning as
well as for unsupervised issues. N -dimensional data points representing n properties are
separated into groups. The process of grouping, hence, the order of the iterative steps and
the way of determining the distance between the points, defines the method of clustering.

Definition of distance

The most straightforward way of measuring the distance between two points is the Euclidean
definition, which measures the shortest way without weighting properties. Another akin
distance is the so-called city block. It defines the range by accumulating the vertical and
horizontal distances, as if one would walk through streets in a rectangular street pattern.
A more sophisticated approach is the Mahalanobis distance [121] which is defined as follows:

d(~x, ~y) =
√

(~x− ~y)TΣ−1(~x− ~y) (4.1)

A beneficial advantage is the fact that the relationship between the different parameters is
taken into account by using the covariance matrix Σ (cf. [87]). In this way, the relationship
between all parameters is considered, i.e. if they are proportionally related (positive Σ),
inversely proportionally related (negative Σ) or not connected. The covariance is given by:

cov(X ,Y) = E [(X − E [X])(Y − E [Y])] (4.2)

The variance (cf. 2.4) is a special case of the covariance, if X = Y . E is the expected value
and here equals the sample mean (cf. 2.4).

Hierarchical clustering

In contrast to the conventional clustering methods, the hierarchical clustering does not need
any configuration variables. There are two main classes of hierarchical clustering, namely:
agglomerative clustering and devisive clustering. While the agglomerative clustering method
puts smaller clusters together, the devisive clustering technique cuts one into two sections
iteratively. Alternative names for these approaches are bottom-up and top-down due to the
organization of the resulting clustering process. The former begins with the maximum count
of clusters while the latter approach deals with only one cluster having all data points [122].

35

Dendrogram

The dendrogram shown in figure 4.3 is the most predominant way of visualizing a hierar-
chical clustering of data. A dendrogram provides an interpretable graphical representation
of clustered formations where each joining combines two clusters. The advantage of this
grouping is that the distances between clusters that are joined into a new group can be
illustrated by vertical lines. A single linkage hierarchical clustering algorithm constructs a
dendrogram from the data. Single linkage clustering can be viewed as a recursive process of
pairwise merging of the closest pairs. It is this merging process that defines the dendrogram
tree structure. The result is a cluster dendrogram (cf. figure 4.3) that identifies the clusters
for a given linkage value. Single linkage clustering can also be viewed as the computation of
the minimum spanning tree of the data. The different values labeling the x-axis represent
the leaves of the clustering, i.e. the different clusters. Each of them is filled with at least
one data point. Illustrated by the length and measured by the value markers of the y-axis,
it is clear to see immediately which groups are separated by a extensive distance and which
lie together closely. As the height represents the distance between two objects that are con-
nected, these heights can be used to evaluate the segmentation. This means that a short
vertical line connecting two leaves or the groups of several leaves, implies a short distance
between them. Altough dendrograms are often considered as a technique of representing
data graphically, marginal changes in the data may lead to different hierarchical clusters.

Figure 4.3: Identifying clusters in a dendrogram consisting 25 data points.

36

4.4 Artificial neural networks

ANNs (also known as ‘connectionist models’ or ‘parallel distributed processing’) are bio-
logically inspired flexible, nonlinear parametric models that mimic biological neural sys-
tems [123]. The most important feature of an ANN is the ability to learn. After an ANN
has learned data, it has the ability to depict skills of a biological brain as generalization,
pattern recognition. An ANN is, after it is properly learned, able to divide data into classes.

4.4.1 Neuron

The structure of individual neurons is taken from the biological model. This point is well
illustrated in figure 4.4. A human nerve cell gets input provided by dendrites, which is
summed up and sends its output through an axon. Typically, an ANN consists of lay-
ers, with a vast number of neural units (neurons), which are represented as units in the
ANN, and synapses, which are defined as connections or adaptive weights between units.
The value of a weight determines the connection strength between two neurons. In order to
identify the relation between the presented inputs and targets, the weights are adapted, or
learned, so that the expected error of the learned model is minimized. ANNs are configurable
models which allow the developer to incorporate domain knowledge into the architecture.

Figure 4.4: Schematic representation of a biological neuron together with its interconnections.

37

Definition 4.4.1. Neural network: A neural network is a tuple (M , Q, f) where M is the
amount of the neurons, Q as the connection graph and f is the function of the learning rule.

ANNs have been widely applied to solve many difficult problems in different areas, including
pattern recognition, signal processing and language learning. There have also been numerous
applications in health care and finance, moreover, several architectures have emerged [124].

~x2 ~w2 Σ f

Activation
function

y

Output

~x1 ~w1

~x3 ~w3

Weights

Bias unit
b

Inputs

Figure 4.5: Mathematical representation of an artificial neuron model.

Figure 4.5 represents the structure of an artificial neuron model with the vector ~x as
the output from the neurons with incoming connections considered to the actual neuron.
The vector ~w includes the weights of the incoming connections. Σ is the sum function of re-
sulting weighted values including a constant input of 1, called the bias unit. f denotes an acti-
vation function (e.g. figure 4.6). The calculated output y is passed on to subsequent neurons.
Regarding the structure of a neuron and its associated mathematical functions there are
established different perspectives and descriptions. This work is based primarily on the de-
scriptions provided by [125]. Each neuron is associated with an activation and an output
function. Using these functions is determined by how strongly the compounds are irritated.
An activation function is also referred to a sum function, which adds up the incoming values.

n∑
i=1

wij ∗ oi (4.3)

38

where n is the number of neurons that have an exit towards the currently viewed neuron, wij
is the weight of the i -th input neuron to the current neuron j and oi is the output. Along with
the output function, a threshold can be set from which the neuron emits an action. If the
calculated result is below this threshold value, the neuron produces no output. The output
is usually limited from above, so that it lies in the interval between 0 to 1. In a straightfor-
ward manner, the output function with the least effort is the binary output function, which
outputs in the event of activation 1; otherwise 0. It is, however, more useful to use at least
one linear output function or at best a sigmoidal [126] (S-shaped) output function. One
problem arises with linear output functions, that is, linear functions are not limited, and
grow the values infinitely. With regard to sigmoidal functions, the hyperbolic tangent, logis-
tic function or sine is provided. When applying sine, only the interval between −π

2
and π

2
is

used. Since the logistic function is used when using an ANN, it is discussed more detailed.
In figure 4.6 the sigmoidal (logistic) function is illustrated with the following function term:

f(x) =
1

1 + e−x
(4.4)

f(x) =
1

1 + e−x

−3 −2 −1 1 2 3

0.5

1

x

f(x)

Figure 4.6: The sigmoidal (logistic) function.

Another reason for the use of sigmoidal functions is the fact that input values that are close
to 0 can be better separated by the slope in this segment. Moreover, the absolute size of large
positive or negative values, through in these areas flat curve, is relatively insignificant [127].

39

4.4.2 Perceptron

The perceptron is the most basic type of a neural network [128], [129]. An illustration
of a simple perceptron is given in figure 4.7. It implements an artificial neuron with a
threshold function whose incoming weights are adaptive and learned from data (cf. 4.4.1).
The perceptron’s output is a weighted linear combination of the inputs forced to the binary
values {0, 1} by means of a threshold. In the following representation, a set of inputs is given
and the learning objective is to be able to classify these inputs into two categories which are
labeled 0 and 1. Mathematically, the perceptron is defined by the following equation below:

hθ(x) =

1 if wTx+ b > 0

0 else
(4.5)

where x is the input vector, w is the weights vector, and b is a bias weight. After the weights
are initialized randomly or with zero values, they are adapted to minimize the error between
the predicted output ŷ = hθ(x) and the target y ∈ {0, 1} using the perception learning rule:

w ← w + α(y − ŷ) • x (4.6)

where α > 0 is the learning rate and • denotes the element wise product of two vectors.
The perceptron learning rule is similar to the gradient descent learning rule (cf. section 2.4).

10/12/2016 Preview

1/1

Output

Input 1

Input 2

Input 3

Input layer Output layer

Figure 4.7: General perceptron model including one input and one output layer.

40

4.4.3 Multi-layer perceptron

The multi-layer perceptron MLP [130] is an extension of the perceptron consisting of multiple
layers of neurons equipped with nonlinear activation functions. Contrary to the perceptron
model the MLP is able to extract abstract representations of the inputs by stacking multiple
layers of hidden neurons on top of each other. It has been proven [131–133] that the MLP
is a universal function approximator, i.e. it can approximate any continuous function on a
compact domain with arbitrary accuracy, provided it has at least a single hidden layer with
a sufficient number of neurons. To formalize the model, let ni denote the dimensionality of
layer i in an MLP. Further, let W (i) ∈ Rni×ni+1 be the weight matrix from layer i to layer
i + 1, b(i) ∈ Rni+1 be the bias weight vector of layer i + 1, and φ(i) : R → R is an element
wise nonlinear activation function applied to layer i. Widely used activation functions are:

tanh(x) :=
ex − e−x

ex + e−x
(4.7)

logistic(x) :=
1

1 + e−x
(4.8)

H(x) =

0 if x < 0

1 if x ≥ 0
(4.9)

Figure 4.8 depicts commonly used activation functions with ANNs. A MLP with l layers
including the input layer and output layer is described by the subsequent equations as follows:

z(1) = x (4.10a)

a(2) = W (1)z(1) + b(1) (4.10b)

z(2) = φ(2)(a(2)) (4.10c)

...

a(l) = W (l−1)z(l−1) + b(l−1) (4.10d)

z(l) = φ(l)(a(l)) (4.10e)

ŷ = z(l) (4.10f)

41

φ(x) = tanh(x)

−3 −2 −1 1 2 3

−1

−0.5

0.5

1

x

φ(x)

(a) Hyperbolic tangent function.

φ(x) = logistic(x)

−3 −2 −1 1 2 3

0.5

1

x

φ(x)

(b) Logistic function.

φ(x) = H(x)

−1 −0.5 0.5 1

0.2

0.4

0.6

0.8

1

x

φ(x)

(c) Heaviside step function.

Figure 4.8: Activation functions commonly in use with neural networks.

In figure 4.9 the MLP architecture is illustrated. Let θ := {W (1), b(1), . . . ,W (l−1), b(l−1)} be
the parameters of the given MLP formulas from 4.10a to 4.10d. Then, the optimal θ∗ of the
model are found by minimizing the error between the model output and the data (x, y) ∈ D
given the inputs x and the targets y.

arg min
θ

1

|D|
∑

(x,y)∈D

L(ŷ, y) (4.11)

10/12/2016 Preview

1/1

Output 1

Output 2

Input 1

Input 2

Input 3

Input layer Hidden layer Output layer

Figure 4.9: Multi-layer perceptron with l layers including the input, hidden and output layer.

42

4.4.4 Learning

The memory and the knowledge of an artificial neural network are in the weights of the
compounds. The weight is then amplified when one neuron receives signals from another and
both neurons are activated simultaneously [134]. This principle has been derived from [135].
The general form of the formula for the Hebbian theory is as follows:

∆wij = ηxizj (4.12a)

wij(t+ 1) = wij(t) + ∆wij (4.12b)

where neuron j receives input of neuron i. η is a constant learning rate, for example, in the
interval between 0 and 1, which determines how much weight is to be changed in learning.
The delta learning rule is an extension of the Hebbian learning rule. It is described as follows:

∆wij = ηxi(yj − yj) = ηxiδj (4.13a)

wij(t+ 1) = wij(t) + ∆wij (4.13b)

where yj is the actual output and yj the expected output. It calculates the difference be-
tween the actual output and the desired output and the weights are adjusted accordingly.
The learning rule notices that the learning process is over, which means the network has
learned the predetermined data sufficiently, if the fault is kept to a minimum. The network
error is the deviation of the actual value from the desired value for each output neuron.
In an ANN the learning is usually followed by a certain sequence, based on a neural net-
work learning algorithm, which consists, from a general point of view, of the following steps:

Algorithm 1 General steps in a neural network learning algorithm
1: repeat
2: apply model to the network . Step 1
3: if target output = actual output then . Step 2a
4: go to step 1
5: else
6: adjust weights of wrongly classified output neurons . Step 2b
7: go back to step 1 . Step 3
8: until
9: all patterns are recognized accordingly

43

During the learning procedure it may occur that connections or neurons are added/deleted,
and parameter or function rules are changed respectively. Most frequently, however, the
described weight change is concerned. Another important aspect of learning in the neural
network is the training data. It is quite relevant to find the right balance between positive
and negative training data. In this work, positive training data is considered as network data
packages to be identified as normal. Negative training data is data of abnormal behavior,
in which the network is taught to identify what is described as “normal state”. Negative
training data is necessary because otherwise the ANN shows a not acceptable learning rate.

Learning paradigms

An ANN has two different working principles, namely training and testing. The way, in
which an ANN can learn from training data, can be classified into three types of learning
during the training process (cf. [15], [68]). Anomaly detection techniques based on classifica-
tion approaches can also be categorized based on the properties of the training data set. The
training data set can either contain labeled instances from normal and abnormal classes, or
only from one of the classes, typically from the normal class. Additionally, a training data set
may contain unlabeled instances only. These statements lead to the following categorization:

• Supervised learning – In supervised learning both classes normal and abnormal are
predetermined and labeled respectively. These classes can be conceived of as a finite
data set consisting of input and output values. In practice, unseen data instances will
be labeled with classes normal or abnormal.

• Unsupervised learning – Unsupervised learning is a task with regard to understand-
ing and the discovery of hidden patterns in present data. In contrast to supervised learn-
ing, an ANN is not provided with predefined labels. Training data contains unlabeled
instances only, and, assuming that regular instances are much more frequent than
anomalies, the system’s main task is to classify frequent data instances as normal classes.

• Reinforcement learning – In reinforcement learning the artificial system learns from
a series of rewards or punishments and only the information whether the output class
was correct or not is determined. The model is continuously improved based on pro-
cessed data and the result.

44

4.4.5 Backpropagation

When reinforcement learning or supervised learning is used, it is advisable to combine these
learning principles with backpropagation [136] as it is a common method for training an
ANN [137]. The process for backpropagation is done by comparing the detected output of
the network to the desired output and adjust the weights of the connections based on this
difference [138]. This process starts with the output neurons and is performed in reverse
learning direction and, if necessary, expanding to the input neurons. Learning with the
backpropagation algorithm also involves problems. This is accompanied by the fact that
backpropagation is referred to a “hill-climbing algorithm”. If the error function is consid-
ered as a landscape of hills, then a specific location corresponds to a particular setting of
connection weights. The height at this location is the value of the error function for these
weights. The goal of the backpropagation algorithm is to find the place, where the error
corresponds to the smallest value. Transferred to the landscape metaphor, the main goal is
to find the deepest valley with the corresponding smallest error value. To note is that there
are usually several local minima as can be seen in figure 4.10, of which only one represents
a global minimum. If the algorithm has found a local minimum it can not decide whether a
particular local minimum is also the desired global minimum. With this in mind, the shape
of the error-prone surface is responsible for the success of the backpropagation algorithm.

Figure 4.10: Surface (left) and contour plot (right) showing backpropagation algorithm using gradient descent
with a learning rate of 0.1 and 100 iterations.

45

Part III

Application

Chapter 5

Anomaly detection in distributed

systems

This chapter defines the problem solved by this thesis. In this regard,
the starting point is given, preliminary works are described and facts
from the previous chapter are employed to show conceptual differences.

This thesis’ title “Anomaly-based intrusion detection for automo-
tive networks" already hints at the more general approach of this thesis.

For the actual use (i.e. the application to a real word problem), refinements are necessary.

The results are adapted and refined with the help of related research works and new ap-
proaches. Chapter 3 summarizes the common techniques used for anomaly detection and
other concepts finding their way into this field of research. As mentioned before, the differ-
ence lies in the objectives which are defined by the class of systems which has to be operated
and the group of anomalies, which has to be recognized based on particularly provided data.
The main idea is to develop a system which is capable of recognizing anomalies by observ-
ing the message exchange between the participants of a CAN bus system. The information
about the system, that is necessary to run the anomaly detection system, has to be minimal.

46

5.1 Objectives

The system consists of five main function blocks. The principal workflow can be described
as follows: Based on a positive (cf. 4.4.4) data trace from the source, the learner derives the
model. The source of the buffered CAN bus trace is called the original system. Emitted by
the learner, the system model is then used by the detection system. It compares the actual
behavior of the target system with the system model. Its output is a statement learner re-
garding the observer question whether the trace contains anomalies. Figure 5.1 depicts the
principal structure of the anomaly detection system. The requirements and specifications
concerning the function blocks in the figure below are discussed in the following sections.

9/14/2016 Preview

1/1

Original
System

Learner

System Model

Anomaly
Detection

Data Stream

Anomaly
Indicator

Target
System

Trace

Figure 5.1: Outer framework of the anomaly detection system.

47

5.1.1 Anomalies

As previously mentioned in section 3.1, the term anomaly is understood as behavior devi-
ating from regular test cases without malicious CAN data packages. The benchmark has to
be stated by definition and memorized, so that it is possible to compare the actual system
behavior with the behavior represented by the learned system model. Thus, it is necessary
to learn and represent data that shows accurate operations of the system. An anomaly
can have several different sources. As the system description used for the detection system
is mapping uncritical behavior, an anomaly can be caused by uncritical system behavior
which is not represented in the learned system; external influence on hardware, harmful as
well as harmless; faulty behavior caused by a particular piece of software. A sophisticated
question that could be answered, is which anomalies imply the existence of an intrusion
and which type of intrusion in particular. This would be an important step towards a de-
tection system, including functions for fault diagnosis as well as monitoring network traffic
and protection against network and application-level attacks. However, this is an objec-
tive for further research projects, since an anomaly can be a symptom of a fault, i.e. the
source is not directly derivable. Consequently, the problem is not intended to be solved at
hand, however, it is considered as a future project towards an IPS and IDPS respectively.
The following table 5.1 extends the definitions of the mathematical nomenclature, which can
be helpful to describe the problem and the solution as well as to understand the relations.

Category Symbol Members
Trace T (Set) Symbol

Data stream D (Set) Symbol
Symbol stream S (Set) Letter

Alphabet A (Set) Letter
Anomaly ~a (Vector) Symbol (exp./actual) Time
Anomalies A (Matrix) Symbol (exp./actual) Time

Fault ~f (Vector) Symbol (exp./actual) Time Automaton
Faults F (Matrix) Symbol (exp./actual) Time Automaton

Table 5.1: Symbol definition of mathematical nomenclature.

48

Concluding the statements above, the relationship between the different sets is as follows:

A ⊆ S ⊆ D ⊆ T (5.1)

The task which has to be performed by an anomaly detection system is to determine whether
there is an anomaly within the trace. A fault detection extends this function since it defines
if one of the anomalies implies the existence of a fault. The dilemma resulting from the use
case scenario and the system properties, is that only positive example traces can be used.
When deriving the learned system from such a trace, all possible faults

(
1 1 0 0

)T .
F (i.e. the expected and the actual occurring symbol) are completely unknown. This is an
important difference to most of anomaly detection methods that are described in chapter 3.

5.1.2 Target system

The target system has to be arranged in bus topology (cf. 2.2.2). As a direct consequence,
the overall stream of messages can be accessed by the anomaly detection system, since all
bus devices are using the same wire independent of source and sink. The original sys-
tem has to be represented before the anomaly detection function is exerted, respectively.
This thesis aims to enable the application of a detection system to a wide range of systems.
However, the use case scenario analyzed is a state-of-the-art executive automobile (cf. 1.1.1).

5.1.3 Original system

As a basic assumption, the distributed system such as the target system (cf. section 5.1.2)
can be described by the message traffic between its components (cf. [19]). When doing so,
the states of the system do not stand for variables having a certain value, but rather for
a system immanent status defined by the time (∆t), the traffic history, and the current
message exchange. This approach differs from the common procedure, i.e. the one employed
in other fields (cf. chapter 3), that involves the use of states representing an actual status of
a system. In this case, the status can be described by variables exhibiting certain values, and
thus can be identified by a human expert who analyzed the system behavior. If system states
are defined by the properties described in the listing above, they might also be described by
variables or other information accessible within the system. But it is also possible that some
kind of hidden states are found, which cannot be derived from specification or documentation.

49

5.1.4 Subproblem

The objectives of this thesis lead to three main subproblems. Firstly, it is the essential
question how the representation of the original system can be learned and stored efficiently.
Considering the large extent of a real world system, the second task is to achieve a reduction
of complexity. Thirdly, an integrated approach considering both issues has to be realized.

Learning of the original system

The first and elemental subproblem is the learning of the original system’s representation.
Since the states have to be formed by the data message stream observed, some further
questions arise. A message stream is inherently an unidentified and continuous string of
data. The used system substitutes have to show several properties which are declared below:

• Correct, in a defined manner – The representation has to last for a percentage that
is necessary for a defined quality avoiding overfitting.

• Verifiable – Data access has to ensure the possibility to verify incoming data streams.

The terms percentage, quality and overfitting have to be clarified in relation to the topic in
chapter 6. Necessary information regarding the original system has to be kept to a minimum.

5.1.5 Complexity reduction

When assuming complexity of a real distributed system to a high degree it has to be reduced
from the beginning when the representative system properties are defined. An additional
possibility is the partitioning of a large representation. This reduction is not intended to
cause a loss of information, but rather to reduce redundancy. Due to the fact that the original
system is cut into several sub-systems, the third sub-task arises. The sub-systems have to
be represented and connected to account for the whole original system. The disadvantages
with reference to the verification of the learned models have to be kept as small as possible.

50

5.2 Constraints

The detection system has to work in a network with a clearly arranged data stream. That is,
there is no doubt about the order of the data. Since this thesis aims at developing a system
model, resources are limited. Available time and memory are bounded so that a compressed
representation of the system has to be adapted within a finite time frame with a memory
occupation manageable for a contemporary embedded system. Another question that could
be solved is to define which anomalies can be detected by the approach. Certainly, only
those which have an impact on the message exchange can be recognized. The assumption
made is that a significant amount of anomalies causes symptoms within the stream of data.

5.3 Data source

The available information regarding the system are:

• Mask – The mask enables the interpretation of the trace by masking the information
with CAN identifier, timestamp, etc.

• Trace – The trace is a set of messages recorded in a defined timespan. All messages
and the related time signature are known.

• Status – The information whether the trace is positive or not is essential. When a
positive trace is considered as a negative one, the result is negated.

In this thesis, the testing and evaluation is conducted with CAN bus traces recorded in
a standing or driving car. All of them are considered to be “positive”, i.e. no behavior
which implies the existence of an intruder or a failure could be observed. The definition of
a “positive” trace is stated for this work as follows:

1. Warning bulbs are neither blinking nor glowing.

2. The automobile’s behavior can be considered as predictable.

3. No obvious damages on the inside and the outside of the vehicle are visible.

4. The car is moved as it is reasonable in public traffic.

These definitions should be seen as a rule of thumb, as a more detailed definition would
entail accurate analyses of every trace used. The required information can not be accessed.

51

5.4 Use case

With current topics such as autonomous driving and car connectivity, the E/E architecture
of modern vehicles is fundamentally changing. The increasing networking with other traffic
participants, back ends and passengers plays an essential role in this context. Technologies
such as Wi-Fi, Bluetooth, vehicular telematics and Internet access expose the in-vehicle net-
work to threats from external attacks. At the same time, the driving functions - especially
with regard to autonomous driving - have to always work reliably. With this combination
in mind, the automotive industry is facing major new and pressing challenges. A so-called
“observer", which monitors the in-vehicle network communication, can make an important
contribution to enhance the security of an automotive network. Hence, external attacks
and internal malfunctions should be detected in order to take appropriate countermeasures.
The concept and the implementation, which will be developed during the work on this thesis,
have to be applicable to several automotive systems, although they are only tested with data,
recorded from a stationary and moving car’s internal network. Universality is not guaran-
teed since CAN packets and the underlying data varies from manufacturer to manufacturer.
The limitations are stated in section 5.2. However, the use case scenario is a modern passen-
ger car. The long-term direction is to extend this work towards an IDPS as an independent
project, comprising leading car manufacturers. In this scientific field, there are some common
definitions for anomalies that are likely to occur. Thus, it is possible to estimate a value for
a detection rate that should be recognized. For a first prototype preprocessed system repre-
sentations can be used. Nevertheless, for an application in a real environment, a live-learning
approach (learning while the system is running), is necessary. Furthermore, no embedding or
adaptation for the field application is compulsory. The anomaly detection system has to be
developed for laboratory conditions, therefore the observer uses a preprocessed system model.

52

Part IV

Implementation

Chapter 6

Self-learning anomaly detection

This chapter presents and discusses the developed approach in order to
realize a self-learning anomaly detection. Solutions for the considered
subproblems described in the previous chapter are given and discussed.

To allow a good understanding of the coherence between the following subsections,
the particular steps of the proposed detection approach are presented at first.

In section 6.3 associated experiments from in-vehicle recordings are discussed and evaluated.

Officially released in 1986, the CAN is a serial bus system, developed primarily to protect a
car against malfunctions and failures. When it comes to security, CAN provides no compo-
nents against cyber attacks. Information security played only a subordinate role at the time
of the development. Since the CAN bus is a broadcasting network, this nature may lead to
maliciously injected messages performing various actions on different ECUs that might have a
significant impact on driver and passenger safety. Replacing CAN with a more sophisticated
bus may reduce risks, however, due to its widespread use and the time it would take until
current models are scrapped, it is a primary aim to improve the security within the limita-
tions of CAN. An important step towards this direction is the implementation of a system,
detecting intruders on the in-vehicle network by analyzing the vehicular bus message traffic.

53

6.1 Concept

The basic idea of the anomaly detection approach is the representation of a normal (positive)
state of a distributed vehicular system by a statistical model. This model has to be learned
automatically by observing the participants’ exchanging messages, in particular by observ-
ing a data stream without clearly defined beginning/ending. Arising subtasks are the com-
pression of the derived model, the verification and the measurement of the model’s quality.

6.1.1 System composition

The proposed system consists of preprocessing, statistical analysis and learning. These steps
are part of the learning and absorption phase. Afterwards the comparison/emission phase
takes place. As the concept is developed for an early prototype stadium (cf. section 1.1.1),
an approach using a preprocessed model (i.e. the learning does not take place in the actual
platform) is suggested. An overview of each subphase is given by the following itemization.

Absorption

• Preprocessing – The messages and submessages are categorized and the values used
are calculated based on the system information. Furthermore, the symbols are defined
and the data stream is created.

• Timing Analysis – The time distances between all the occurrences of the different
symbols are measured and analyzed with respect to mean, variance and coefficient of
variation.

• Learning – The neural network structure (cf. 6.2.4) learns the model.

Emission

• Verification – When the malicious CAN packet data is compared to a normal trace,
differences have to be reported.

• Quality assessment – Using the metric, the quality of the learned automata is rated,
i.e. the detection performance is measured.

54

6.1.2 Automaton type

The main intention is to learn a machine aL representing the root system aR and the original
system aO whose actual characteristics cannot be accessed completely without uncertainties.

• Original system aO – The original system is the actual system exerting the message
exchange which is observed.

• Root system aR – The root system is part of the original system which is accessible,
as it is mapped in the message exchange observed so far.

• Learned system aL – The learned system is the system represented by the learned
machine.

Using the Angluin-style learner, a machine is learned that is defined by:

aL = (ZL,AL,TL) (6.1)

TL =


t11 t12 · · ·
t21

. . .
... tij

 ; tij ∈ {AL ∪ {0}} (6.2)

nT = |{tij|tij ∈ AL}| (6.3)

where ZL is the number of learned states, AL is the alphabet and TL is the transition
matrix. All the transitions are deterministic (cf. 2.3), while states which define starting
and end points within the automaton are not defined. Every state is considered as possible
beginning and end point of a string. Nevertheless, there is at least one state with outgoing
transitions only (excluding purely cyclic machines). The languages (cf. 2.3) essential for the
proceeding are denoted as follows:

LAutomaton = LA and LStream of symbols = LS (6.4)

Due to the polynomial growth of the learning time, with regard to the system’s complex-
ity, a complete automotive system cannot be learned in an acceptable amount of time.

55

6.1.3 Categorizing sub messages

As described in the previous chapters, it is usually not feasible to model the original system
aO in the presumed problem scenario (cf. 6.1.2). The model of the the root system i.e.
the model representing information contained in the message traffic, has to be as relevant
as possible. This means that the used information has to represent the system behavior
maximally well. The messages exchanged within the bus system contain discrete or con-
tinuous values. Certainly, all values are transmitted binary, but if they are treated the
same way, the system’s complexity increases dramatically. There is a simple reason to this:
Continuous values still consist of the value transmitted as a binary number and the factor
determining the real number. The assumption made at this point, is that the number of
values, which can be adopted by the given factor, will be higher than the number of states.

6.1.4 Cyclic messages

On a CAN bus and other bus systems, messages are sent cyclically. Messages with a cer-
tain ID can be found on the bus with a defined distance in time within a defined tolerance.
Figure 6.1 illustrates existing cycle times in CAN messages. The abscissa represents the
amount of CAN IDs showing the same interval. The respective intervals are shown on the
ordinate. There are more cycle times than the obvious ones such as 250ms, 500ms etc. and
their multiples. Periodically sent variables, like checksums (depending on their definition) or
system-related events, are mapped and interdependencies can also be recognized respectively.

Chapter 6 Self-Learning Anomaly Detection 45

event-oriented symbol-definition (cf. 6.2.3) for the example-data.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

10

20

30

40

50

60

70

t / ms

n

Figure 6.2: Histogram Showing Cyclic Symbols

The abscissa represents the amount of symbols showing the same interval. The respective
intervals are shown on the ordinate. It is evident from 6.2 that there are more cycle-times
than the obvious ones like 100ms, 200ms etc. and their multiples.
Periodically sent variables, like checksums (depending on their definition) or system-related
events, are mapped and interdependencies can be recognized. They are highly dependent on
the definition of letters, and can be detected by analyzing the symbol-timing as described
in the following.

Statistical Analysis

To enable the access to hidden structures within the data, a statistical analysis is exerted.
Five properties are considered being interesting for a further analysis.

1. First Occurrence of an Event

2. Last Occurrence of an Event

3. Sample Mean of the Distances in Time = Cycle-Time

4. Quantity of Single Events

5. Coefficient of Variation of the Cycle-Time

These properties (cf. 2.4) allow to analyze the events concerning their timing.

Figure 6.1: Histogram showing cyclic CAN messages for the used data set.

56

6.2 Training the neural network

During the detection phase, the learning mechanism of the proposed ANN structure is to
classify normal and attack packet data. In this phase, the ANN learns to label classes
correctly by adjusting its corresponding weights. Processing the training data step-by-step,
the ANN makes use of the weights and transfer functions in the hidden layers and makes a
comparison between the desired output and the actual output. Emerging errors are back-
propagated to the network, causing the ANN to tweak the weights for the next input multiple
times continually. Since the performance of an ANN is entirely dependent on the training
performed, the identical training set is processed in a loop-like manner. The individual steps
that are related to the iterative learning approach are presented and discussed subsequently.

6.2.1 Data acquisition

During the data acquisition phase, a moderately large amount of CAN bus traces from a
modern car (cf. figure 6.2) was recorded using a CAN-to-USB interface, connected to the
vehicle via on-board diagnostics interface. Also known as OBD-II and EOBD, the diag-
nostic interface is available in all petrol-powered cars made in 2001, and in 2004 or later
for all diesel cars respectively [139]. OBD-II grants the reading and monitoring of emission-
related signals such as the vehicle’s speed, revolutions per minute and throttle position [140].

(a) Mercedes Benz E350 with 2987 ccm and 170 kW. (b) In-car OBD-II interface.

Figure 6.2: Test vehicle for recorded traces on a connected CAN bus using on-board diagnostics interface.

57

With regard to analyzing the CAN bus data, an open source PC-based monitoring software
was chosen [141]. Figure 6.3 shows extracted raw CAN bus data from the used test vehicle.

Figure 6.3: Open source analyzing software used for monitoring a raw CAN bus trace.

Although the CAN message payload data field may vary in length (maximum of 8 byte), mes-
sages with 8-byte-data were predominant. In-vehicle recordings comprise different scenarios,
such as full braking, accelerating, sudden wheel steering and using the turn indicators ran-
domly (cf. table 6.1). Five recordings, each with more than 800,000 messages are recorded
using 80 kBit/s and 500 kBit/s access. Also, approximately 50 different IDs are identified.

Tool chain

The implementation is written in Python and compiled with JetBrain’s PyCharm Profes-
sional 2016.1.3. Some parts of the statistical analysis are implemented using neural network
toolbox for use with MathWork’s MATLAB [142], particularly those for the feature extrac-
tion and learning. Due to the ease of use, preparation of recorded data is done with Math-
Work’s MATLAB in version R2015b. Microsoft Windows 10 (x64) runs on the used test
laptop with an Intel i5-2450M Dual Core processor with 2.5 GHz and 8 GB main memory.

58

Time Bus ID CAN ID Received (Rx) Payload
613.0132 1 222 Rx 0C 00 31 00 70 0A 0F 0F
613.0143 1 11 Rx 30 00 00 00 10 19 19 00
613.0166 1 30 Rx FD 1C BF FF FF FF FF FF
613.0190 1 14 Rx 00 00 00 00 34 88 44 2D
613.0209 1 3 Rx 1E B3 31 1D F3 31 F2 CA
613.0277 1 17 Rx 08 16 00 00 88 00 02 57
613.0379 1 4 Rx 00 FF 21 81 FF FF 0E 52
613.0506 1 14 Rx 3C 00 01 19 17 19 19 00
613.0582 1 90 Rx 0C 08 39 00 70 0A 0F 0F
613.0600 1 12 Rx 8 3C 00 01 19 17 19 19 00

Table 6.1: Excerpt from a recorded CAN bus data trace.

6.2.2 Parameter extraction

Referring to an abstract representation of a CAN bus data packet, the CAN bus feature is
mainly designed concerning computational efficiency. To put it differently, the CAN feature
is extracted directly from a trace of CAN packets so that the extraction does not require
decoding subsequently. Incidents of symbols in a data packet, particularly the Data field
(cf. 2.2.2) that includes 8 byte (64) positions in the CAN bus syntax are taken into account.
The following representation of the data vector can be mathematically described as follows:

Po = {P (bi), ..., P (b63)} (6.5)

where P (bi) is the probability of the symbol “1” that is observed in the i-th position of a
bit. Given a logistic function L: If P (bi) is < 0.5, the class is mapped to 0, if P (bi) is ≥ 0.5

it is depicted to 1. In order to generate the parameter, the entire bit positions comprised in
the Data field may be of purpose, however, scaling down the dimension can be achieved by
taking semantics, within a predefined range of an analogous syntax element, into account.
The proposed technique regards a system model that takes the prevailing parameter (rev-
olutions per minute, speed, throttle, accelerator pedal) acquired from the in-vehicle CAN
where cross prediction is applied. An overview of extracted parameters is given in figure 6.4.

59

Figure 6.4: Manual parameter extraction from a test drive using a parallel coordinates plot with minimum
values on bottom x-axis and maximum values on top x-axis.

6.2.3 Feature transformation

After analyzing and extracting the recorded data there are emerging problems to deal with:

1. The CAN packets carrying the parameters are sent at different frequencies, hence, the
period of each parameter is not accurate because of the way CAN bus nodes contend
for access.

2. The CAN ID also serves as a priority field, thus, the priority of the parameters are
different among themselves.

3. The timestamps of associated data is not accurate, since the accuracy of the timestamps
depends on the used hardware.

In order to solve the aforementioned problems before using the data packets to train a model,
the parameters are normalized using parameter scaling and mean normalization techniques:

xi :=
xi − µi
si

(6.6)

60

where µi is the average of all values for parameter i and si is the range of values (max - min),
or the standard deviation respectively. Table 6.2 shows the preprocessed (subsampled) data.

Time CAN ID Load Intake Press Engine Rev Speed Throttle
240047.9 222 0.021255 0.000419287 0.02149 0.023041 0.021255
240047.9 11 0.021255 0.000419287 0.02149 0.023041 0.021255
240051.9 30 0.021255 0.000419287 0.02149 0.023041 0.021255
240052.9 14 0.021255 0.000419287 0.02149 0.023041 0.021255
240060.9 3 0.021255 0.000419287 0.02149 0.023041 0.021255
240061.9 17 0.021255 0.000419287 0.02149 0.023041 0.021255
240066.9 4 0.021883 0.000419287 0.02149 0.023041 0.021255
240073.9 14 0.021255 0.000419287 0.02149 0.023041 0.021255
240079.9 90 0.021255 0.000419287 0.02149 0.023041 0.021255

Table 6.2: CAN bus data packets after preprocessing using parameter scaling and normalization techniques.

6.2.4 Classification and learning

Figure 6.5 shows the ANN structure to classify both, normal and malicious CAN packet data.

10/13/2016 Preview

1/1

P()b1

P()bi

P()bn

f

f

f

f

y0

y1

(v)hθ

(v)hθ

(v)hθ

(v)hθwl
1,1

wl
L,p

wy
1,1

wy
m,L

wz
1,1

wz
n,L

Figure 6.5: Artificial neural network structure in the proposed anomaly detection technique.

61

The structure comprises an input layer, several hidden layers and an output layer denoting
normal and anomalous data packets. Each unit in figure 6.5 computes an output with a
sigmoidal (logistic) activation function (cf. 4.4.1). Following this, the summed output vectors
are transferred to subsequently hidden layers. Referring to a supervised learning problem (cf.
4.4.4) and the previous figure 6.5, a training set is given by (v1, y1), (v2, y2), . . . , (vm, ym) with
m samples. Also, there is a feature vector v and y representing the binary label information,
assigned to each training sample. While the learning phase is taking place, v denoting the
input feature, moves through the perceptible input units at the beginning of the neural
network structure, in which initial weights are given by the learning process 4.4.4. Following
this, the weights are tweaked by hand. For this purpose, the cost function J denoting how
well an ANN performs the mapping to correct output classes, given as the mean squared
error between the predicted value and the output, is minimized by the subsequent equation:

J(w; v, y) =
1

2m

m∑
i=1

(hθ(v)− y)2 (6.7)

where w denotes the set of weights, y represents the label and hθ(v) is the output function.
Represented by J as the global cost function, a full batch training is given by the equation:

J(w) =
1

m

m∑
i=1

J(w; vi, yi) +
λ

2m

L∑
l=1

Sl∑
i=1

Sl+1∑
j=1

(w
(l)
j,i)

2 (6.8)

where L is the entire quantity of layers comprising the network, Sl is the amount of units
(bias unit excluded) in the l-th layer, and wlj,i ∈ w denoting the weight of the edges between
a unit i within the layer l − 1 and a unit j in the layer l. The goal is to obtain an optimal
parameter set w∗, minimizing the error between the predicted output and the cost function:

w∗ = arg min
w

J(w) (6.9)

this can be obtained by applying backpropagation (cf. 4.4.5) combined with gradient descent:

wlj,i := wl−1j,i + α
∂

∂wl−1j,i

J(w) (6.10)

where α represents the learning rate and controls how aggressively gradient descent is and
∂

∂wl−1
j,i

denoting a derivative term which updates the weight vector parameters simultaneously.

62

6.3 Testing and evaluation

This section evaluates the proposed detection approach regarding essential aspects. The
performance as well as the quality of the developed and refined techniques are evaluated
and discussed. With respect to this we refer to [143] where experiments on artificial neural
networks were used for statistical anomaly intrusion detection for automotive CAN security.

6.3.1 Performance

For a simulation scenario 80 minutes of driving data and approximately 65000 records of CAN
network traffic were collected. They were separated: 39000 records were used for training and
26000 for testing. The neural network was trained for 150 epochs (full training cycles applied
on the prepared training set). The misclassification rate was measured as the percentage of
inputs that were misclassified: false positives and false negatives (cf. figure 6.6 (red-colored)).

Figure 6.6: Confusion matrix for normal and malicious CAN packet data along with 64996 recorded data
samples. 1170 examples of malicious data are misclassified as normal, and 1950 normal examples are incor-
rectly predicted as malicious. Overall, 95.2 % of the predictions are correct and 4.8 % are false predictions.

63

In figure 6.6, the first two diagonal cells denote the value and percentage of correct clas-
sifications by the trained network. 30743 data packets are correctly classified as normal.
This corresponds to 47.3 % of all 64996 recorded samples. Similarly, 31133 packets are
correctly classified as malicious. This corresponds to 47.9 % of all available data samples.
1170 of the malicious packets are incorrectly classified as normal and this corresponds to 1.8
% of all 64996 samples in the data set. Similarly, 1950 of the normal packets are incorrectly
classified as malicious and this corresponds to 3.0 % of all data. Out of 31913 normal predic-
tions, 96.2 % are correct and 3.7 % are wrong. Out of 33083 malicious predictions, 94.1 %
are correct and 5.9 % are wrong. Out of 32693 normal cases, 94.1 % are correctly predicted
as normal and 5.9 % are predicted as malicious. Out of 32303 malicious cases, 96.3 % are cor-
rectly classified as malicious and 3.7 % are classified as normal. Overall, 95.2 % of the predic-
tions are correct and 4.8 % are wrong classifications with regard to 64996 available samples.
The performance of the false negative and the false positive classification rates is acquired
by using receiver operating characteristics. In figure 6.7, the concurrence between the false
positive detection and the correct classification is represented using the following equation:

RM (%) =
DM

TM
× 100 (6.11)

RN (%) =
DN

TN
× 100 (6.12)

where RM is the detection value of a malicious packet, RN relates to the detection value of
a benign packet, DM is the value of detected malicious packets, DN refers to the number of
detected normal packets, TM corresponds to the total number of malicious packets and TN
represents the total number of normal packets. By plotting the consolidation of the false
positive value and the detection ratio with a given threshold, the curves in figure 6.7 can be
achieved. It should be noted that a receiver operating characteristics curve shows an optimal
classification performance when the data points are visualized more in the top-left corner.
With respect to the performance progress of a neural network, a visual indicator at which the
validation performance reached a minimum is helpful to determine if any changes need to be
made to the network’s architecture, the available data sets, or the training process. Figure
6.8 depicts the best performance, which is taken from the epoch with the lowest validation
error. Determined by the cost function, the error reduces in general with increasing epochs.

64

Figure 6.7: Receiver operating characteristics to measure the trade-off between the false positive detection
and the correct classification for normal packets (green) and maliciously injected packets (red).

Figure 6.8: Best network performance, taken from the lowest validation error of 0.040244 at epoch 144.

65

6.3.2 CAN packet injection

There are two forms of CAN message injection strategies. On the one hand there is in-
jecting CAN diagnostic messages, on the other hand is injecting standard messages to inti-
mate the messages from ECUs [144], [145]. In general, diagnostic messages do not appear
when a passenger vehicle is on the road. If a diagnostic message happens on the road,
it is needed to be assumed that an attack or system malfunction may be the case [146].
During the evaluation experiments, message injection attacks are divided into two types
for experiments. The first type covers the injection of specific CAN messages compris-
ing a single CAN ID repeatedly to make the vehicle operate according to the injected
messages [147]. Type two refers to injecting random or preordered messages of multiple
CAN IDs to massively disrupting the CAN communication and eventually causing a sys-
tem malfunction on the in-vehicle network [148], [149] or a denial of service [150], [151].
With regard to this, the vehicular CAN is simulated by sending data packets to the net-
work that communicate with several ECUs on a broadcasting-based message transmission.
CAN packets were generated using the Open Car Test-bed and Network Experiments (OC-
TANE) software and sent to the CAN via on-board diagnostics which typically provides
direct access to one of the vehicle’s CAN buses (modern cars contain multiple CANs).
To address the problem of overfitting, a larger amount of generated packets were assigned to
the training data than to the testing data. Attack scenarios comprise the injection of a single
messages and multiple messages with various speed for making the CAN unavailable [152].
In the first place messages of a randomly selected single CAN ID with double, fivefold, and
tenfold faster than origin cycle are injected. Generated messages are sent 10-100 times faster
than the original ECU to make the target ECU listen to the injected messages (cf. [7]). Fig-
ure 6.9 represents the time intervals of selected CAN IDs at normal status and injection
status, respectively. Messages are injected tenfold faster than the own cycle of the CAN ID,
therefore, the time interval of injected messages is less than 10 % of the original interval.
In the following example, the difference of time intervals between the normal status and
malicious status can be clearly seen. In figure 6.9 each point represents an order and time
interval of a message. The abscissa depicts the message generation number, whereas the
ordinate is a time interval of a message. In figure 6.9b, the first message is generated at
0.055s and the second message is created at 0.157s, therefor, its point is marked at 25, 0.102.

66

(a) Normal CAN messages status. (b) Malicious CAN messages status.

Figure 6.9: Scatter plot showing time intervals of CAN messages.

Further examination comprised injected messages of ten randomly selected CAN IDs with
double, fivefold, and tenfold than original speed. In order to avoid the problem of overfitting
(cf. section 4.2), injected messages are divided as follows: 30 malicious samples and 70 nor-
mal samples in double speed injection, 40 attack samples and 60 normal samples in fivefold
speed injection, and 45 attack samples and 55 normal samples in tenfold speed injection.
The experimental results of injected single and multiple messages are presented in table 6.3.

Message type Speed Normal samples Malicious samples Performance

Single
CAN ID

Double 67 33 92.4 %
Fivefold 52 48 93.1 %
Tenfold 71 29 89.7 %

Multiple
CAN IDs

Double 63 37 92.0 %
Fivefold 74 26 95.6 %
Tenfold 55 45 92.4 %

Table 6.3: Performance evaluation of experimental CAN message injection.

In summary, it can be established that there is a clear distinction between time intervals
of messages under normal status and injected attack status. Time frames of a concretely
chosen CAN ID in normal condition is approximately 0.10 seconds. In contrast to this, time
intervals under injection attack conditions are nearly one-tenth of the normal time interval.

67

Chapter 7

Summary

The following chapter concludes the thesis, identifies the main contri-
butions, highlights benefits and limitations of the proposed approach
and discusses possible future works within the related field of research.

This thesis aims at providing a solution to the problem of detecting intruders in
an automobile network by means of a self-learning mechanism. Arising tasks

are related to the data acquisition the proposed learning technique including performance.

The principal motivation is to enable the use of formalized techniques to model a real-
world distributed system by observing the message exchange of a modern passenger vehicle.
In this regard, it is shown how a data stream can be abstracted by using statistical analysis.
Based on this definition, a symbol stream is generated representing the message exchange
that takes place between the bus participants. To access these information, basic bus-related
data is required to allow the interpretation of the data stream. As the intention of the whole
concept is to model a system with complexity to a high degree, it is proposed to segment
the data stream resulting from the abstraction described above. In this case, an intense
complexity means that the amount of occurring events is high in a certain period of time.
To achieve the desired learning, an ANN is exerted using the results of a statistical analysis.

68

7.1 Contributions

It is shown how the approach of anomaly-based intrusion detection can be applied to learn
a representation of a real system. For that purpose, CAN bus traces of a modern vehicle
are used in order to introduce an event-based system representation. The particular steps
are evaluated and analyzed to provide further development. In the end, it is demonstrated
how the actual concept can be used for detecting anomalous states in vehicular networks.
Section 6.3.1 shows the performance of the developed detection system. It is rated in two
ways: Predominantly, the quality of the detection is reviewed as well as the concurrence
between incorrect positive detection and the proper classification is shown. Moreover, ex-
periments that involve injected CAN packets are conducted. This analysis gives parameters
indicating which events show similar behavior regarding quantity of occurrence, cycle time
and the variation of the cycle time. The CAN traces defined during clustering are fed to
a learning algorithm which derives automaton models. An ANN is employed for that pur-
pose where parameters, extracted from the network, as probability-based feature vectors are
trained. This is the basis of detecting anomalies emitted by a trace of a system’s behavior.

7.2 Benefits

The proposed approach provides benefits in many ways. Anomaly detection offers advantages
as part of IDS in general, but also certain improvements over signature-based techniques.
A major benefit over signature-based IDS is that ANNs are capable of learn characteristics
and patterns of unknown instances with increasing experience. The main advantage of the
use of ANNs for intrusion detection is their flexibility. ANNs have the capability to moni-
tor data within a vehicular network, even if the broadcasted CAN packets are incomplete
or distorted. Both these characteristics are crucial in the context of an automobile network
when it comes to receiving information with the provision of an unpredictable system failure.
Since ANNs learn from historical data, predictions about future instances can be derived
on the basis of the previously known behavior. ANNs can be used to recognize already
known attacks with a very high detection rate and apply this knowledge to instances whose
characteristics do not exactly match previously known attacks. As with the previous men-
tioned benefits, there are limitations of IDS in general and disadvantages which apply to
anomaly-based IDS and in particular the possible use of ANNs within this field of research.

69

7.3 Limitations

Unlike data from the on-board diagnostics interface, converted raw CAN recordings from
car manufacturers are highly confidential and available only as part of an ongoing project.
Another serious drawback of anomaly detection systems is that they can only detect attacks
that exhibit abnormal behavior. Also, the vulnerability during the learning phase poses a
major problem. Ideally, attacks should be prevented during the system’s learning phase.
The dynamics of the learned network characteristics are also considered as an additional
risks, since trained attack profiles from potential intruders may no longer seen as anomalous
and, thus, as an attack. The further drawback of anomaly-based intrusion systems following,
is that they are an expensive and maintenance-intensive approach. Expensive, since high
demands towards the hardware and software, such as real-time capabilities and a sufficient
memory space, are placed. Moreover, special employees are needed to initialize and maintain
the detection system. With respect to maintenance-intensive, set threshold values have to
be constantly updated and adapted after the initialization of the anomaly detection system.
However, the high rate of false alarms (false positives), resulting from a narrowly trained de-
tection system and a high rate of wrongly classified intruders (false negatives), resulting from
a broadly trained algorithm, is probably the most obvious disadvantage of anomaly detection.
When it comes to applying an ANN to the problem of intrusion or misuse detection, three
primary arguments against this strategy arise. The first argument against ANNs refers to
the requirements of the training itself. Since an ANN’s ability to identify indications of
possible intrusion is entirely dependent on the training of the system being monitored, the
training data and the techniques are used rather critically. Secondly, in order to ensure that
the results are statistically significant and correct, the training routine requires an enor-
mous amount of data to be learned. The training of an ANN for the purpose of intrusion
detection can require countless, individual attack sequences. The vast amount of this sen-
sitive information is not only very hard to obtain but was also not available for this thesis.
The most significant drawback of applying an ANN to IDS is the black box nature of ANNs.
The user can neither specify an ANN what triggers a particular behavior, nor can he man-
ually change the ANN to have a specific way of behaving. ANNs adapt their analysis in
response to the training that is performed. The weights and transfer function are usually
frozen after the ANN has achieved an acceptable success. Although the ANN is reaching an
adequate probability of success, the basis for this degree of precision is not often known [153].

70

7.4 Outlook

Nowadays, most IDS work with signature-based analysis. Since both, anomaly-based and
signature-based detection systems are still a long way away from being implemented as a
standard for widespread use in mass-produced vehicles, in the opinion of the author, hybrid
forms of different intrusion detection methods will be most likely to become established.
Although many parts of this thesis work have been described in detailed, there are still
research activities need to be made. If a possible attacker is able to send CAN packets on
the CAN bus, this scenario might have a significant impact not only on the security of auto-
mobiles but also on driver and passenger safety. Technical implementations such as securing
the CAN communication by cryptographic security mechanisms [154], functional and pene-
tration testing of automotive components [155] or by evaluating anomaly detection in LIN,
MOST, FlexRay or other vehicular bus systems [156], can not guarantee full compensation
for cyber attacks on cars. In order to close the gap towards automotive security, the consider-
ation of cyber attacks on cars must become an integral part of every design decision in terms
of hardware and software. Car manufacturers as well as automotive technology suppliers
should therefore consistently build up expertise from the field of conventional information se-
curity and apply given strategies as an integral part of their engineering change management.

71

Bibliography

[1] Flavio D. Garcia, David Oswald, Pierre Pavlidès, and Timo Kasper, “Lock It and
Still Lose It—On the (In)Security of Automotive Remote Keyless Entry Systems,” in
Proceedings of the 25th USENIX Security Symposium. Austin, USA: IEEE, 2016, pp.
929–944.

[2] Charles A. Miller and Chris Valasek, “Adventures in Automotive Networks and Control
Units,” IOActive, Seattle, USA, Technical Report, 2014.

[3] ——, “Remote Exploitation of an Unaltered Passenger Vehicle,” IOActive, Seattle,
USA, Technical Report, 2015.

[4] Lotfi Ben Othmane, Harold Weffers, Mohd Murtadha Mohamad, and Marko Wolf,
“A Survey of Security and Privacy in Connected Vehicles,” in Wireless Sensor and
Mobile Ad-Hoc Networks, Driss Benhaddou and Ala Al-Fuqaha, Eds. New York,
USA: Springer New York, 2015, pp. 217–247.

[5] David Clare, Shane Fry, Helena Handschuh, Harsh Patil, Chris Poulin, Armin Wasicek,
Rob Wood, David A Brown, Geoffrey Cooper, Ian Gilvarry, David Grawrock, Anand
Rajan, Alan Tatourian, Ramnath Venugopalan, Claire Vishik, David Wheeler, and
Meiyuan Zhao, “Automotive Security Best Practices: Recommendations for security
and privacy in the era of the next-generation car,” Intel Corporation, Santa Clara,
USA, White Paper, 2015.

[6] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno,
Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham,
and Stefan Savage, “Experimental Security Analysis of a Modern Automobile,” in Pro-
ceedings of the 2010 IEEE Symposium on Security and Privacy, ser. SP ’10. Wash-
ington, D.C., USA: IEEE Computer Society, 2010, pp. 447–462.

[7] Charles A. Miller and Chris Valasek, “A Survey of Remote Automotive Attack Sur-
faces,” BlackHat USA, 2014.

[8] Tong-Jin Park, Chang-Soo Han, and Sang-Ho Lee, “Development of the electronic con-
trol unit for the rack-actuating steer-by-wire using the hardware-in-the-loop simulation
system,” Mechatronics, vol. 15, no. 8, pp. 899–918, 2005.

72

[9] Shane Tuohy, Martin Glavin, Ciaran Hughes, Edward Jones, Mohan Trivedi, and
Liam Kilmartin, “Intra-Vehicle Networks: A Review,” IEEE Transactions on Intelli-
gent Transportation Systems, vol. 16, no. 2, pp. 534–545, 2015.

[10] Subir Biswas, Raymond Tatchikou, and Francois Dion, “Vehicle-to-Vehicle Wireless
Communication Protocols for Enhancing Highway Traffic Safety,” IEEE Communica-
tions Magazine, vol. 44, no. 1, pp. 74–82, 2006.

[11] Fan Yu, Dao-Fei Li, and David Crolla, “Integrated Vehicle Dynamics Control – State-
of-the Art Review,” in Vehicle Power and Propulsion Conference, 2008. VPPC ’08.
IEEE. Harbin, China: IEEE, 2008, pp. 1–6.

[12] Christof Ebert and Capers Jones, “Embedded Software: Facts, Figures, and Future,”
Computer, vol. 42, no. 4, pp. 42–52, 2009.

[13] Eugen Mayer, “Serial Bus Systems in the Automobile. Part 4. FlexRay for data ex-
change in safety-critical applications,” Vector Informatik GmbH, Stuttgart, Germany,
Technical Report, 2010.

[14] Hans-Hermann Braess and Ulrich Seiffert, Eds., Handbook of Automotive Engineering,
ser. SAE-R. Warrendale, USA: SAE International, 2005, no. 312, oCLC: 723699011.

[15] Varun Chandola, Arindam Banerjee, and Vipin Kumar, “Anomaly Detection: A Sur-
vey,” ACM Computing Surveys, vol. 41, no. 3, pp. 15:1–15:58, 2009.

[16] Michael Muter and Naim Asaj, “Entropy-Based Anomaly Detection for In-Vehicle Net-
works,” in Intelligent Vehicles Symposium (IV). Baden-Baden, Germany: IEEE, 2011,
pp. 1110–1115.

[17] Moti Markovitz and Avishai Wool, “Field Classification, Modeling and Anomaly De-
tection in Unknown CAN Bus Networks.” Cologne, Germany: ESCAR, 2015, pp.
1–10.

[18] Adrian Taylor, Nathalie Japkowicz, and Sylvain Leblanc, “Frequency-Based Anomaly
Detection for the Automotive CAN bus,” in World Congress on Industrial Control
Systems Security (WCICSS). Slough, United Kingdom: IEEE, 2015, pp. 45–49.

[19] Falk Langer, Dirk Eilers, and Rudi Knorr, “Fault Detection in Discrete Event Based
Distributed Systems by Forecasting Message Sequences with Neural Networks,” in
KI 2009: Advances in Artificial Intelligence, David Hutchison, Takeo Kanade, Josef
Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar
Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos,
Doug Tygar, Moshe Y. Vardi, Gerhard Weikum, Bärbel Mertsching, Marcus Hund,
and Zaheer Aziz, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, vol.
5803, pp. 411–418.

73

[20] Roland Schmitz and Walter Kriha, Sichere Systeme: Konzepte, Architekturen Und
Frameworks, ser. Xpert.press. Berlin/Heidelberg, Germany: Springer-Verlag Berlin
Heidelberg, 2009.

[21] Jittiwut Suwatthikul, “Fault detection and diagnosis for in-vehicle networks,” in Fault
Detection, Wei Zhang, Ed. Rijeka, Croatia: InTech, 2010.

[22] Jihene Rezgui and Soumaya Cherkaoui, “Detecting Faulty and Malicious Vehicles Using
Rule-based Communications Data Mining,” in 36th Conference on Local Computer
Networks (LCN), Bonn, Germany, 2011, pp. 827–834.

[23] Christopher M. Bishop, Neural Networks for Pattern Recognition. New York, USA:
Oxford University Press, Inc., 1995.

[24] Srinivas Mukkamala, Guadalupe Janoski, and Andrew Sung, “Intrusion Detection Us-
ing Neural Networks and Support Vector Machines.” IEEE, 2002, pp. 1702–1707.

[25] Sandeep Nair Narayanan, Sudip Mittal, and Anupam Joshi, “Using Data Analytics to
Detect Anomalous States in Vehicles,” Tech. Rep., 2015.

[26] Norbert Schlingmann, “Diagnostic of off-highway machinery for agriculture,” in CTI
Special Day “Diagnostics for Off-Highway Applications”. Lindau, Germany: Claas
KGaA mbH, 2012.

[27] Richard Ree Brooks, Samuel Sander, Juan Deng, and Joachim Taiber, “Automotive
System Security: Challenges and State-of-the-Art,” in Proceedings of the 4th Cyber
Security and Information Intelligence Research Workshop (CSIIRW). ACM Press,
2008, p. 1.

[28] Patrick Nisch, “Security Issues in Modern Automotive Systems,” in Secure Systems.
Stuttgart, Germany: Stuttgart Media University, 2011, pp. 1–6.

[29] Corey Thuen, “Commonalities in Vehicle Vulnerabilities,” IOActive, Seattle, USA,
Technical Report, 2016.

[30] Rainer Kallenbach, “Trends in Automotive Electronics,” Journal of Electrical Engi-
neering, vol. 7, no. 1, p. 92, 2007.

[31] Max Milbredt, “The Electronics and Microtechnology Industry in Germany,” Berlin,
Germany, Technical Report, 2015.

[32] Max Milbredt and Rico Trost, “The Automotive Electronics Industry in Germany:
Connected, Electrified and Autonomous Cars,” Berlin, Germany, Technical Report,
2015.

[33] Marko Kolbe and Jonathan Schoo, “The Automotive Electronics Industry in Germany,”
Berlin, Germany, Technical Report, 2014.

74

[34] Dorottya Papp, Zhendong Ma, and Levente Buttyan, “Embedded Systems Security:
Threats, Vulnerabilities, and Attack Taxonomy,” in 13th Annual Conference on Pri-
vacy, Security and Trust (PST). Izmir, Turkey: IEEE, 2015, pp. 145–152.

[35] Chris Blommendaal, “Information Security Risks for Car Manufacturers based on the
In-Vehicle Network,” Master’s Thesis, University of Twente, Twente, Netherlands,
2015.

[36] Ivan Studnia, Vincent Nicomette, Eric Alata, Yves Deswarte, Mohamed Kaaniche,
Youssef Laarouchi, and Matthieu Roy, “Security of embedded automotive networks:
State of the art and a research proposal,” in SAFECOMP 2013-Workshop CARS (2nd
Workshop on Critical Automotive Applications: Robustness & Safety) of the 32nd In-
ternational Conference on Computer Safety, Reliability and Security, Toulouse, France,
2013.

[37] Manfred Broy, Ingolf H. Kruger, Alexander Pretschner, and Christian Salzmann, “En-
gineering Automotive Software,” Proceedings of the IEEE, vol. 95, no. 2, pp. 356–373,
2007.

[38] Catalin-Virgil Briciu and Ioan Filip, “The Challenge of Safety and Security in Automo-
tive Systems,” in 9th International Symposium on Applied Computational Intelligence
and Informatics (SACI). Timisoara, Romania: IEEE, 2014, pp. 177–181.

[39] Christoph Marscholik and Peter Subke, Road Vehicles - Diagnostic Communication.
Heidelberg, Germany: Hüthig Verlag, 2008.

[40] Daimler AG, “Diagram of electronic components in a car - CHM Revolution,” Stuttgart,
Germany, Technical Report, 2016.

[41] Robert Bosch GmbH, “CAN Specification Version 2.0,” Stuttgart, Germany, Technical
Report, 1991.

[42] Arjun Shrinath and Ali Emadi, “Electronic control units for automotive electrical power
systems: Communication and networks,” Proceedings of the Institution of Mechanical
Engineers, Part D: Journal of Automobile Engineering, vol. 218, no. 11, pp. 1217–1230,
2004.

[43] Marko Wolf, André Weimerskirch, and Christof Paar, “Security in Automotive Bus
Systems,” in Proceedings of the Workshop on Embedded Security in Cars (Escar)’04,
Bochum, Germany, 2004.

[44] ——, “Secure In-Vehicle Communication,” in Embedded Security in Cars, Kerstin
Lemke, Christof Paar, and Marko Wolf, Eds. Berlin/Heidelberg, Germany: Springer-
Verlag, 2006, pp. 95–109.

75

[45] Dan Klinedinst and Christopher King, “On Board Diagnostics: Risks and Vulnerabili-
ties of the Connected Vehicle,” Carnegie Mellon University, Pittsburgh, USA, Technical
Report, 2016.

[46] Hendrik Schweppe, “Security and privacy in automotive on-board networks,” PhD
Thesis, Telecom ParisTech, Paris, France, 2012.

[47] Eugen Mayer, “Serial Bus Systems in the Automobile. Part 5. MOST for transmission
of multimedia data,” Vector Informatik GmbH, Stuttgart, Germany, Technical Report,
2010.

[48] ——, “Serial Bus Systems in the Automobile. Part 3. Simple and cost-effective data
exchange in the automobile with LIN,” Vector Informatik GmbH, Stuttgart, Germany,
Technical Report, 2010.

[49] ——, “Serial Bus Systems in the Automobile. Part 2. Reliable data exchange in the
automobile with CAN,” Vector Informatik GmbH, Stuttgart, Germany, Technical Re-
port, 2010.

[50] Robert Davis, Alan Burns, Reinder Bril, and Johan Lukkien, “Controller Area Network
(CAN) schedulability analysis: Refuted, revisited and revised,” Real-Time Systems,
vol. 35, no. 3, pp. 239–272, 2007.

[51] Tsutomu Matsumoto, Masato Hata, Masato Tanabe, Katsunari Yoshioka, and
Kazuomi Oishi, “A Method of Preventing Unauthorized Data Transmission in Con-
troller Area Network,” in 75th Vehicular Technology Conference (VTC Spring). Yoko-
hama, Japan: IEEE, 2012, pp. 1–5.

[52] Paul Carsten, Todd Andel, Mark Yampolskiy, and Jeffrey McDonald, “In-Vehicle Net-
works: Attacks, Vulnerabilities, and Proposed Solutions,” in Proceedings of the 10th
Annual Cyber and Information Security Research Conference, ser. CISR ’15. New
York, USA: ACM, 2015, pp. 1:1–1:8.

[53] “Bus Systems,” in Bosch Automotive Electrics and Automotive Electronics - Systems
and Components, Networking and Hybrid Drive, 5th ed., ser. Bosch Professional Au-
tomotive Information, Robert Bosch GmbH, Ed. Wiesbaden, Germany: Springer
Fachmedien, 2014.

[54] Florian Hartwich, “CAN with Flexible Data-Rate Specification Version 1.0,” in Pro-
ceedings of the 13th International CAN Conference. Hambach, Germany: Robert
Bosch GmbH, 2012.

[55] Edward F. Moore, “Gedanken-Experiments on Sequential Machines,” in Automata
Studies, Annals of Mathematical Studies, vol. 34. Princeton, USA: Princeton Univer-
sity Press, 1956, pp. 129–153.

76

[56] Zvi Kohavi and Niraj K. Jha, Switching and Finite Automata Theory, 3rd ed. Cam-
bridge, United Kingdom: Cambridge University Press, 2009.

[57] David Harel, “Statecharts: A Visual Formalism for Complex Systems,” Science of
Computer Programming, vol. 8, no. 3, pp. 231–274, 1987.

[58] Bela Bollobas, Modern Graph Theory, 1st ed. New York, USA: Springer New York,
2013.

[59] Zhiwei Gao, Carlo Cecati, and Steven X. Ding, “A Survey of Fault Diagnosis and
Fault-Tolerant Techniques Part I: Fault Diagnosis with Model-Based and Signal-Based
Approaches,” IEEE Transactions on Industrial Electronics, vol. 62, no. 6, pp. 3757–
3767, 2015.

[60] Ehsan Moradi-Pari, Amin Tahmasbi-Sarvestani, and Yaser Pourmohammadi Fallah,
“A Hybrid Systems Approach to Modeling Real-Time Situation-Awareness Component
of Networked Crash Avoidance Systems,” IEEE Systems Journal, vol. 10, no. 1, pp.
169–178, 2016.

[61] Mariagrazia Dotoli, Maria Pia Fanti, Agostino Marcello Mangini, and Walter Ukovich,
“Fault Detection of Discrete Event Systems Using Petri Nets and Integer Linear Pro-
gramming,” Automatica, vol. 45, no. 11, pp. 2665–2672, 2009.

[62] Anuradha Kodali, Yilu Zhang, Chaitanya Sankavaram, Krishna Pattipati, and Mu-
tasim Salman, “Fault Diagnosis in the Automotive Electric Power Generation and
Storage System (EPGS),” IEEE/ASME Transactions on Mechatronics, vol. 18, no. 6,
pp. 1809–1818, 2013.

[63] Abraham Cherfi, Michel Leeman, Florent Meurville, and Antoine Rauzy, “Modeling
automotive safety mechanisms: A Markovian approach,” Reliability Engineering &
System Safety, vol. 130, pp. 42–49, 2014.

[64] David M. Nicol, William H. Sanders, and Kishor S. Trivedi, “Model-Based Evalua-
tion: From Dependability to Security,” IEEE Transactions on Dependable and Secure
Computing, vol. 1, no. 1, pp. 48–65, 2004.

[65] Ethem Alpaydin, Introduction to Machine Learning (Adaptive Computation and Ma-
chine Learning), 3rd ed. Cambridge, United Kingdom: The MIT Press, 2014.

[66] Tenko Raykov and George A. Marcoulides, An Introduction to Applied Multivariate
Analysis. New York, USA: Routledge Academic, 2008.

[67] Varun Chandola, “Anomaly Detection for Symbolic Sequences and Time Series Data,”
PhD Thesis, University of Minnesota, Minneapolis, USA, 2009.

[68] Victoria J. Hodge and Jim Austin, “A Survey of Outlier Detection Methodologies,”
Artificial Intelligence Review, vol. 22, no. 2, pp. 85–126, 2004.

77

[69] Eamonn Keogh, Jessica Lin, Sang-Hee Lee, and Helga Van Herle, “Finding the most
unusual time series subsequence: Algorithms and applications,” Knowledge and Infor-
mation Systems, vol. 11, no. 1, pp. 1–27, 2006.

[70] Rüdiger W. Brause, Timm S. Langsdorf, and Hans-Michael Hepp, “Neural Data Min-
ing for Credit Card Fraud Detection,” in Proceedings of the 11th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI), ser. ICTAI ’99. Washington,
D.C., USA: IEEE Computer Society, 1999, pp. 103–106.

[71] Weng-Keen Wong, Andrew W. Moore, Gregory F. Cooper, and Michael M. Wagner,
“Bayesian Network Anomaly Pattern Detection for Disease Outbreaks,” in Proceedings
of the 20th International Conference on Machine Learning (ICML), vol. 2. Washing-
ton, D.C., USA: AAAI Press, 2003, pp. 808–815.

[72] Yann Le Cun, Bernhard E. Boser, John S. Denker, Richard E. Howard, Wayne Hab-
bard, Lawrence D. Jackel, and Don Henderson, “Handwritten Digit Recognition with
a Back-Propagation Network,” in Advances in Neural Information Processing Systems
2, David S. Touretzky, Ed. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1990, pp. 396–404.

[73] Simon Hawkins, Hongxing He, Graham Williams, and Rohan Baxter, “Outlier Detec-
tion Using Replicator Neural Networks,” in Data Warehousing and Knowledge Discov-
ery, Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, Yahiko Kambayashi, Werner
Winiwarter, and Masatoshi Arikawa, Eds. Berlin, Germany: Springer Berlin Heidel-
berg, 2002, vol. 2454, pp. 170–180.

[74] Andreas Theissler, “Detecting anomalies in multivariate time series from automotive
systems,” PhD Thesis, Brunel University, London, United Kingdom, 2013.

[75] ——, “Anomaly detection in recordings from in-vehicle networks,” in Big Data Appli-
cations and Principles (BIGDAP), Madrid, Spain, 2014.

[76] Rolf Isermann and Peter Ballé, “Trends in the application of model-based fault detec-
tion and diagnosis of technical processes,” Control Engineering Practice, vol. 5, no. 5,
pp. 709–719, 1997.

[77] Jiawei Han, Micheline Kamber, and Jian Pei, Data Mining: Concepts and Techniques,
3rd ed. Haryana, India; Burlington, USA: Elsevier Ltd, Oxford, 2011.

[78] Eamonn Keogh, Jessica Lin, and Ada Fu, “HOT SAX: Efficiently Finding the Most
Unusual Time Series Subsequence.” Houston, USA: IEEE Computer Society, 2005,
pp. 226–233.

[79] Gunjan Mansingh, Lila Rao, Kweku-Muata Osei-Bryson, and Annette Mills, “Profiling
internet banking users: A knowledge discovery in data mining process model based
approach,” Information Systems Frontiers, vol. 17, no. 1, pp. 193–215, 2015.

78

[80] Martin Sachenbacher and Peter Struss, “Task-dependent qualitative domain abstrac-
tion,” Artificial Intelligence, vol. 162, no. 1-2, pp. 121–143, 2005.

[81] IEEE Computer Society, “IEEE Standard Glossary of Software Engineering Terminol-
ogy,” IEEE Std 610.12-1990, pp. 1–84, 1990.

[82] Rui Abreu, Alberto González, Peter Zoeteweij, and Arjan J. C. van Gemund, “Using
Fault Screeners for Software Error Detection,” in Evaluation of Novel Approaches to
Software Engineering, Leszek Maciaszek, César González-Pérez, and Stefan Jablonski,
Eds. Berlin/Heidelberg, Germany: Springer Berlin Heidelberg, 2010, vol. 69, pp.
60–74.

[83] Olga Grinchtein, Bengt Jonsson, and Martin Leucker, “Inference of Timed Transition
Systems,” Electronic Notes in Theoretical Computer Science, vol. 138, no. 3, pp. 87–99,
2005.

[84] ——, “Learning of Event-Recording Automata,” Theoretical Computer Science, vol.
411, no. 47, pp. 4029–4054, 2010.

[85] Martin Leucker and Christian Schallhart, “A Brief Account of Runtime Verification,”
The Journal of Logic and Algebraic Programming, vol. 78, no. 5, pp. 293–303, 2009.

[86] Moez Krichen and Stavros Tripakis, “Conformance Testing for Real-Time Systems,”
Formal Methods in System Design, vol. 34, no. 3, pp. 238–304, 2009.

[87] Christopher M. Bishop, Pattern Recognition and Machine Learning. New York, USA:
Springer Verlag, 2007.

[88] Herve Debar, Monique Becker, and Didier Siboni, “A Neural Network Component for
an Intrusion Detection System,” in SP ’92 Proceedings of the 1992 IEEE Symposium
on Security and Privacy. Oakland, USA: IEEE Computer Society Press, 1992, pp.
240–250.

[89] Shelly Palmer, Data Science for the C-Suite. New York, USA: Digital Living Press,
2015.

[90] Yousef El, Ahmed Toumanari, Anouar Bouirden, and Nadya El, “Intrusion Detection
Techniques in Wireless Sensor Network using Data Mining Algorithms: Comparative
Evaluation Based on Attacks Detection,” International Journal of Advanced Computer
Science and Applications, vol. 6, no. 9, pp. 164–172, 2015.

[91] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim, “Efficient Algorithms for
Mining Outliers from Large Data Sets,” ACM SIGMOD Record, vol. 29, no. 2, pp.
427–438, 2000.

[92] James F. Allen, “Maintaining Knowledge about Temporal Intervals,” Communications
of the ACM, vol. 26, no. 11, pp. 832–843, 1983.

79

[93] Frank Höppner, “Learning Dependencies in Multivariate Time Series,” in Workshop
on Knowledge Discovery from Temporal- and Spatio-Temporal Data. Lyon, France:
Springer Science & Business Media, 2002, pp. 25–31.

[94] Theophano Mitsa, Temporal Data Mining. Boca Raton, USA: Chapman & Hall/CRC,
2010.

[95] Srivatsan Laxman and P. S. Sastry, “A Survey of Temporal Data Mining,” Sadhana,
vol. 31, no. 2, pp. 173–198, 2006.

[96] Rahul Khanna and Huaping Liu, “System Approach to Intrusion Detection Using Hid-
den Markov Model,” in Proceedings of the 2006 International Conference on Wireless
Communications and Mobile Computing (IWCMC). Vancouver, Canada: ACM Press,
2006, p. 349.

[97] George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, and Greta M. Ljung, Time
Series Analysis: Forecasting and Control, 5th ed. Hoboken, USA: John Wiley & Sons,
2015.

[98] Kan Deng, Andrew W. Moore, and Michael C. Nechyba, “Learning to Recognize Time
Series: Combining ARMA models with Memory-based Learning,” in International
Symposium on Computational Intelligence in Robotics and Automation (CIRA). Pitts-
burgh, USA: IEEE Computer Society Press, 1997, pp. 246–251.

[99] Hichem Sedjelmaci, Sidi Mohammed Senouci, and Mosa Ali Abu-Rgheff, “An Effi-
cient and Lightweight Intrusion Detection Mechanism for Service-Oriented Vehicular
Networks,” IEEE Internet of Things Journal, vol. 1, no. 6, pp. 570–577, 2014.

[100] Hichem Sedjelmaci, Tarek Bouali, and Sidi Mohammed Senouci, “Detection and Pre-
vention From Misbehaving Intruders in Vehicular Networks,” in IEEE Global Commu-
nications Conference. Austin, USA: IEEE, 2014, pp. 39–44.

[101] Hichem Sedjelmaci and Sidi Mohammed Senouci, “A new Intrusion Detection Frame-
work for Vehicular Networks,” in IEEE International Conference on Communications
(ICC). Sydney, Australia: IEEE, 2014, pp. 538–543.

[102] Richard A. Kemmerer and Giovanni Vigna, “Intrusion Detection: A Brief History and
Overview,” Computer, vol. 35, no. 4, pp. 27–30, 2002.

[103] Christian Vestlund, “Intrusion Detection Systems in Networked Embedded Systems,”
in TDDD17 Information Security. Linköping, Sweden: Linköping University, 2015.

[104] Tobias Hoppe, Stefan Kiltz, and Jana Dittmann, “Security threats to automotive CAN
networks—Practical examples and selected short-term countermeasures,” Reliability
Engineering & System Safety, vol. 96, no. 1, pp. 11–25, 2011.

80

[105] Ulf E. Larson, Dennis K. Nilsson, and Erland Jonsson, “An Approach to Specification-
Based Attack Detection for In-Vehicle Networks,” in Intelligent Vehicles Symposium
(IV). Eindhoven, Netherlands: IEEE, 2008, pp. 220–225.

[106] Michael Muter, Andre Groll, and Felix C. Freiling, “A Structured Approach to Anomaly
Detection for In-Vehicle Networks,” in Sixth International Conference on Information
Assurance and Security (IAS). Atlanta, USA: IEEE, 2010, pp. 92–98.

[107] Constantinos Patsakis, Kleanthis Dellios, and Mélanie Bouroche, “Towards a dis-
tributed secure in-vehicle communication architecture for modern vehicles,” Computers
& Security, vol. 40, pp. 60–74, 2014.

[108] Samuel Woo, Hyo Jin Jo, and Dong Hoon Lee, “A Practical Wireless Attack on the
Connected Car and Security Protocol for In-Vehicle CAN,” IEEE Transactions on
Intelligent Transportation Systems, pp. 1–14, 2014.

[109] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin, and Kuang-Yuan Tung, “In-
trusion detection system: A comprehensive review,” Journal of Network and Computer
Applications, vol. 36, no. 1, pp. 16–24, 2013.

[110] Chih-Fong Tsai, Yu-Feng Hsu, Chia-Ying Lin, and Wei-Yang Lin, “Intrusion detection
by machine learning: A review,” Expert Systems with Applications, vol. 36, no. 10, pp.
11 994–12 000, 2009.

[111] Lynn Margaret Batten, Reihaneh Safavi-Naini, David Hutchison, Takeo Kanade, Josef
Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar
Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos,
Dough Tygar, Moshe Y. Vardi, and Gerhard Weikum, Eds., Information Security and
Privacy, ser. Lecture Notes in Computer Science. Berlin, Germany: Springer Berlin
Heidelberg, 2006, vol. 4058.

[112] Pedro García-Teodoro, Jesús E. Díaz-Verdejo, Gabriel Maciá-Fernández, and Enrique
Vázquez, “Anomaly-based network intrusion detection: Techniques, systems and chal-
lenges,” Computers & Security, vol. 28, no. 1-2, pp. 18–28, 2009.

[113] Jeremy Frank, “Artificial Intelligence and Intrusion Detection: Current and Future
Directions,” in Proceedings of the 17th National Computer Security Conference, Balti-
more, USA, 1994.

[114] David A. Forsyth and Jean Ponce, Computer Vision: A Modern Approach, 2nd ed.
Cambridge, United Kingdom: Pearson Publishing Ltd, 2011.

[115] Christopher D. Manning and Hinrich Schütze, Foundations of Statistical Natural Lan-
guage Processing. Cambridge, USA: MIT Press, 1999.

81

[116] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning, “A survey of
robot learning from demonstration,” Robotics and Autonomous Systems, vol. 57, no. 5,
pp. 469–483, 2009.

[117] Arthur L. Samuel, “Some Studies in Machine Learning Using the Game of Checkers.
II-Recent Progress,” IBM Journal of Research and Development, vol. 44, no. 1.2, pp.
206–226, 2000.

[118] Sergey Brin and Lawrence Page, “The Anatomy of a Large-Scale Hypertextual Web
Search Engine,” Computer Networks, vol. 56, no. 18, pp. 3825–3833, 2012.

[119] Claude Sammut and Geoffrey I. Webb, Eds., Encyclopedia of Machine Learning, 1st ed.
New York, USA: Springer US, 2010.

[120] Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 3rd ed.
New Jersey, USA: Prentice Hall International, 2010.

[121] Prasanta Chandra Mahalanobis, “On the Generalised Distance in Statistics,” Proceed-
ings of the National Institute of Sciences (Calcutta), vol. 2, pp. 49–55, 1936.

[122] Trevor Hastie, Robert Tibshirani, and Jerome Friedman, The Elements of Statistical
Learning, 2nd ed., ser. Springer Series in Statistics. New York, USA: Springer New
York, 2009.

[123] Ben Kröse and Patrick van der Smagt, An Introduction to Neural Networks, 8th ed.
Amsterdam/Oberpfaffenhofen: The University of Amsterdam, 1996.

[124] Judith E. Dayhoff, Neural Network Architectures: An Introduction. New York, USA:
Van Nostrand Reinhold Co., 1990.

[125] Wolfram-Manfred Lippe, Soft-Computing, ser. eXamen.press. Berlin/Heidelberg, Ger-
many: Springer Verlag, 2006.

[126] David H. von Seggern, CRC Standard Curves and Surfaces with Mathematica, 3rd ed.,
Daniel Zwillinger, Ed. Boca Raton, USA: CRC Press, 2016.

[127] Eberhard Schöneburg, Nikolaus Hansen, and Andreas Gawelczyk, Neuronale Netzw-
erke. Einführung, Überblick Und Anwendungsmöglichkeiten. Haar, Munich: Markt &
Technik Verlag, 1990.

[128] Frank Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage
and Organization in The Brain,” Psychological Review, pp. 65–386, 1958.

[129] Marvin Minsky and Seymour A. Papert, Perceptrons: An Introduction to Computa-
tional Geometry, expanded ed. Cambridge, USA: The MIT Press, 1987.

[130] Simon Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. Upper Saddle
River, USA: Prentice Hall PTR, 1998.

82

[131] George Cybenko, “Approximation by Superpositions of a Sigmoidal Function,” Math-
ematics of Control, Signals, and Systems, vol. 2, no. 4, pp. 303–314, 1989.

[132] Kurt Hornik, Maxwell Stinchcombe, and Halbert White, “Multilayer Feedforward Net-
works are Universal Approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989.

[133] Kurt Hornik, “Approximation Capabilities of Multilayer Feedforward Networks,” Neu-
ral Networks, vol. 4, no. 2, pp. 251–257, 1991.

[134] Oliver Kramer, Computational Intelligence. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2009.

[135] Robert G. Morris, “D.O. Hebb: The Organization of Behavior,” Brain Research Bul-
letin, vol. 50, no. 5-6, p. 437, 1999.

[136] Martin T. Hagan, Howard B. Demuth, and Mark Beale, Neural Network Design.
Boston, USA: PWS Publishing Co., 1996.

[137] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams, “Learning represen-
tations by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[138] Sushmita Mitra and Yoichi Hayashi, “Bioinformatics With Soft Computing,” IEEE
Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews),
vol. 36, no. 5, pp. 616–635, 2006.

[139] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham,
and Stefan Savage, “Comprehensive Experimental Analyses of Automotive Attack Sur-
faces,” in Proceedings of the 20th USENIX Conference on Security, ser. SEC’11, San
Francisco, USA, 2011, p. 6.

[140] ISO, “ISO 15031-5:2015 - Road vehicles – Communication between vehicle and external
equipment for emissions-related diagnostics – Part 5: Emissions-related diagnostic
services,” Vernier, Geneva, Technical Report, 2015.

[141] Robert Bosch Engineering and Business Solutions Limited, “BUSMASTER,” Technical
Report, 2011.

[142] Howard Demuth and Mark Beale, Neural Network Toolbox For Use with Matlab, 1993.

[143] Satoshi Otsuka, Tasuku Ishigooka, Yukihiko Oishi, and Kazuyoshi Sasazawa, “CAN
Security: Cost-Effective Intrusion Detection for Real-Time Control Systems,” in SAE
World Congress & Exhibition. Detroit, USA: SAE International, 2014.

[144] Charles A. Miller and Chris Valasek, “Car Hacking: For Poories,” IOActive, Seattle,
USA, Technical Report, 2013.

[145] ——, “CAN Message Injection,” IOActive, Seattle, USA, Technical Report, 2016.

83

[146] Stephanie Bayer, Thomas Enderle, Dennis-Kengo Oka, and Marko Wolf, “Automotive
Security Testing – The Digital Crash Test,” in Energy Consumption and Autonomous
Driving, ser. Lecture Notes in Mobility, Jochen Langheim, Ed. Springer International
Publishing, 2016, pp. 13–22.

[147] Tobias Hoppe, Stefan Kiltz, and Jana Dittmann, “Applying Intrusion Detection to
Automotive IT – Early Insights and Remaining Challenges,” Journal of Information
Assurance and Security (JIAS), vol. 4, no. 6, pp. 226–235, 2009.

[148] Frederic Stumpf, Christian Meves, Benjamin Weyl, and Marko Wolf, “A Security Ar-
chitecture for Multipurpose ECUs in Vehicles,” in 25. VDI/VW-Gemeinschaftstagung:
Automotive Security, Ingolstadt, Germany, 2009.

[149] Khattab M. Ali Alheeti, Anna Gruebler, and Klaus D. McDonald-Maier, “An Intru-
sion Detection System Against Malicious Attacks on the Communication Network of
Driverless Cars,” in 12th Annual IEEE Consumer Communications and Networking
Conference (CCNC). Las Vegas, USA: IEEE, 2015, pp. 916–921.

[150] Pierre Kleberger, Tomas Olovsson, and Erland Jonsson, “Security aspects of the in-
vehicle network in the connected car,” in Intelligent Vehicles Symposium (IV). Baden-
Baden, Germany: IEEE, 2011, pp. 528–533.

[151] Pierre Kleberger, “A Structured Approach to Securing the Connected Car,” Licentiate
Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2012.

[152] Chung-Wei Lin and Alberto Sangiovanni-Vincentelli, “Cyber-Security for the Con-
troller Area Network (CAN) Communication Protocol,” in International Conference
on Cyber Security (CyberSecurity). Kuala Lumpur, Malaysia: IEEE, 2012, pp. 1–7.

[153] LiMin Fu, “A Neural Network Model for Learning Rule-Based Systems,” in Interna-
tional Joint Conference on Neural Networks (IJCNN), vol. 1. Baltimore, USA: IEEE,
1992, pp. 343–348.

[154] Jennifer Ann Bruton, “Securing CAN Bus Communication: An Analysis of Crypto-
graphic Approaches,” PhD Thesis, National University of Ireland, Galway, Ireland,
2014.

[155] Stephanie Bayer, Thomas Enderle, Dennis Kengo Oka, and Marko Wolf, “Security
Crash Test – Practical Security Evaluations of Automotive Onboard IT Components,”
in Automotive - Safety & Security 2014 (2015), Sicherheit Und Zuverlässigkeit Für
Automobile Informationstechnik. Stuttgart, Germany: Gesellschaft für Informatik e.
V. (GI), 2014, pp. 125–139.

[156] Daniel Fallstrand and Viktor Lindström, “Applicability analysis of intrusion detec-
tion and prevention in automotive systems,” Master’s Thesis, Chalmers University of
Technology, Gothenburg, Sweden, 2015.

84

	I Fundamentals
	Chapter 1 Introduction
	Motivation and problem statement
	Motivation
	Anomaly detection: The state of the art
	Problem statement

	Self-learning of decomposed automata
	Outline

	Chapter 2 Automotive systems and automata
	Nomenclature
	Automotive systems
	E/E architecture
	Controller area network

	Automata
	Definitions
	Properties

	Statistics

	II Theory
	Chapter 3 Outliers and anomaly detection
	Taxonomy
	Concepts
	Conventional
	Operational
	AI-related

	System modeling
	Summary

	Chapter 4 Intrusion detection as a classification problem
	Intrusion Detection
	Machine learning
	Clustering
	Artificial neural networks
	Neuron
	Perceptron
	Multi-layer perceptron
	Learning
	Backpropagation

	III Application
	Chapter 5 Anomaly detection in distributed systems
	Objectives
	Anomalies
	Target system
	Original system
	Subproblem
	Complexity reduction

	Constraints
	Data source
	Use case

	IV Implementation
	Chapter 6 Self-learning anomaly detection
	Concept
	System composition
	Automaton type
	Categorizing sub messages
	Cyclic messages

	Training the neural network
	Data acquisition
	Parameter extraction
	Feature transformation
	Classification and learning

	Testing and evaluation
	Performance
	CAN packet injection

	Chapter 7 Summary
	Contributions
	Benefits
	Limitations
	Outlook

	Bibliography

